Python - OpenCV、OCR识别摄像头中的文字

该文章介绍了如何利用Python3的OpenCV库打开摄像头,并结合TesseractOCR库实现实时文字识别。通过安装必要的库,编写代码读取摄像头帧并转换为文本,用户可以查看和打印出捕获的文本。程序在检测到q键时退出。
摘要由CSDN通过智能技术生成

使用Python3的OpenCV库来识别摄像头中的文字,以及使用OCR(光学字符识别)技术。

安装OpenCV库

在命令行中输入以下命令来安装OpenCV库:

pip install opencv-python

安装Tesseract OCR库

Tesseract OCR库是一种免费的光学字符识别库,它可以识别多种语言的文字。您可以在命令行中使用以下命令来安装它:

pip install pytesseract

打开摄像头

使用以下代码打开摄像头:

import cv2  
  
cap = cv2.VideoCapture(0)

读取摄像头中的文字

使用以下代码来读取摄像头中的文字:

import pytesseract  
  
while True:  
    ret, frame = cap.read()  
    text = pytesseract.image_to_string(frame, lang='eng')  
    print(text)

这将输出摄像头捕获的文本。

关闭摄像头

使用以下代码关闭摄像头:

cap.release()

完整代码:

import cv2  
import pytesseract  
  
cap = cv2.VideoCapture(0)  
  
while True:  
    ret, frame = cap.read()  
    text = pytesseract.image_to_string(frame, lang='eng')  
    print(text)  
  
    cv2.imshow('frame', frame)  
    if cv2.waitKey(1) & 0xFF == ord('q'):  
        break  
  
cap.release()  
cv2.destroyAllWindows()

这个代码将打开摄像头,读取摄像头中的文字,并在窗口中显示它。按下“q”键退出程序。

以下是一个简单的Python代码示例,演示如何使用dlib和OpenCV来捕获人脸图像、提取人脸特征、将其存储到MySQL数据库,并在识别时显示人名。 注意:此代码示例仅供参考,需要根据具体情况进行修改和调整。 ```python import dlib import cv2 import mysql.connector # 加载dlib的人脸检测器和人脸特征提取器 detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') # 连接MySQL数据库 mydb = mysql.connector.connect( host="localhost", user="yourusername", password="yourpassword", database="yourdatabase" ) # 创建MySQL表格 mycursor = mydb.cursor() mycursor.execute("CREATE TABLE IF NOT EXISTS faces (id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(255), features BLOB)") # 捕获摄像头图像并检测人脸 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break # 转换图像为灰度图像,以提高检测效率 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = detector(gray) # 遍历每个检测到的人脸 for face in faces: # 提取人脸特征 landmarks = predictor(gray, face) features = [landmarks.part(i).x for i in range(68)] + [landmarks.part(i).y for i in range(68)] # 显示人脸图像和特征点 cv2.rectangle(frame, (face.left(), face.top()), (face.right(), face.bottom()), (0, 0, 255), 2) for i in range(68): cv2.circle(frame, (landmarks.part(i).x, landmarks.part(i).y), 2, (0, 255, 0), -1) # 将人名和人脸特征存储到MySQL数据库 name = input("请输入人名:") sql = "INSERT INTO faces (name, features) VALUES (%s, %s)" val = (name, features) mycursor.execute(sql, val) mydb.commit() # 显示图像 cv2.imshow('frame', frame) if cv2.waitKey(1) == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows() # 在识别时从MySQL数据库检索人名和人脸特征 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break # 转换图像为灰度图像,以提高检测效率 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = detector(gray) # 遍历每个检测到的人脸 for face in faces: # 提取人脸特征 landmarks = predictor(gray, face) features = [landmarks.part(i).x for i in range(68)] + [landmarks.part(i).y for i in range(68)] # 在MySQL数据库检索人名和人脸特征 mycursor.execute("SELECT name FROM faces WHERE features=%s", (features,)) result = mycursor.fetchone() name = result[0] if result else "Unknown" # 显示人脸图像和人名 cv2.rectangle(frame, (face.left(), face.top()), (face.right(), face.bottom()), (0, 0, 255), 2) cv2.putText(frame, name, (face.left(), face.top() - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # 显示图像 cv2.imshow('frame', frame) if cv2.waitKey(1) == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows() ``` 在上面的代码,我们使用了MySQL数据库来存储人名和人脸特征。首先,我们创建了一个名为“faces”的表格,用于存储人名和人脸特征。在捕获摄像头图像时,我们遍历每个检测到的人脸,并使用dlib提取人脸特征。然后,我们使用输入的人名和提取的人脸特征将其存储到MySQL数据库。在识别时,我们检索MySQL数据库的人名和人脸特征,并将其与检测到的人脸特征进行比较,以确定人名。最后,我们在图像上显示人名。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值