dataframe 数据分析将Class 由字符转变为数值

这段代码展示了如何将DataFrame中的分类变量转换为数值类型,以便于后续的机器学习模型训练。首先,定义了一个函数`conver`,它通过查找`Class`列的唯一值并映射到对应的索引。然后,使用`map`函数将`Class`列的每个值转换为其对应的数值。最后,对于DataFrame中的其他分类列(如`clo`),也应用了相同的方法进行转换。
摘要由CSDN通过智能技术生成
# 把train_data 中的Class 转变为数值类型
Class = train_data['Class'].unique()
Class
np.argwhere(Class=='SEKER')[0][0]
def conver(x):
    return np.argwhere(Class==x)[0,0]
train_data['Class'] = train_data['Class'].map(conver)
train_data.columns

clos = ['Class']

for clo in clos:
    u = train_data[clo].unique()
    
    def conver(x):
        return np.argwhere(u==x)[0,0]
    
    train_data[clo] = train_data[clo].map(conver)
train_data.tail()

网页上学到的

原来的Dataframe

 

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import StratifiedKFold,KFold
Class = train_data['Class'].unique()
Class

 

 

np.argwhere(Class=='SEKER')[0][0]
def conver(x):
    return np.argwhere(Class==x)[0,0]
train_data['Class'] = train_data['Class'].map(conver)
train_data.columns

clos = ['Class']

for clo in clos:
    u = train_data[clo].unique()
    
    def conver(x):
        return np.argwhere(u==x)[0,0]
    
    train_data[clo] = train_data[clo].map(conver)
train_data.tail()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值