线性代数-为什么矩阵倒置可以解方程?

1. 背景

矩阵倒置最常见的应用之一就是用来解线性方程组。我们可以通过矩阵的逆来求解方程组的解。

例子: 假设有一个方程组:

2 x + 3 y = 5 4 x − y = 3 \begin{aligned} 2x + 3y = 5 \\ 4x - y = 3 \end{aligned} 2x+3y=54xy=3

我们可以将这个方程组表示为矩阵形式:

[ 2 3 4 − 1 ] [ x y ] = [ 5 3 ] \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix} [2431][xy]=[53]

然后,我们可以通过计算矩阵的逆来找到 x x x y y y 的值。

2. 为什么可以计算矩阵的逆来找到 x x x y y y 的值?

  1. 想象方程组是一把锁

    • 你有两个未知数(x 和 y)被"锁"住了
    • 锁上写着两个条件:
      2 x + 3 y = 5 4 x − y = 3 \begin{aligned} 2x + 3y &= 5 \\ 4x - y &= 3 \end{aligned} 2x+3y4xy=5=3
  2. 矩阵求逆就像找到开锁的钥匙

    • 每把锁都有它专门的钥匙
    • 这把锁可以写成矩阵形式:
      [ 2 3 4 − 1 ] [ x y ] = [ 5 3 ] \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix} [2431][xy]=[53]
  3. 用钥匙开锁就能找到答案

    • 当我们用对了钥匙(矩阵求逆),得到:
      [ x y ] = [ 1 1 ] \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} [xy]=[11]
    • 也就是 x = 1 x = 1 x=1, y = 1 y = 1 y=1

让我用三个简单的例子来解释为什么矩阵求逆像钥匙:

  1. 穿衣服的例子

    • 穿上毛衣:这是一个动作
    • 脱掉毛衣:这是反向动作(能把你恢复原样)
    • 脱衣服就像是"求逆",它能撤销穿衣服的动作
  2. 数字的例子

    • 10 10 10 乘以 2 2 2 得到 20 20 20
    • 20 20 20 除以 2 2 2 得到 10 10 10
    • 除法就是乘法的"求逆",能把数字恢复原样
  3. 所以,矩阵求逆也是这个道理

    • 原始方程经过矩阵变换得到: A X = B AX = B AX=B
    • 用逆矩阵就能"撤销"得到: X = A − 1 B X = A^{-1}B X=A1B
    • 就像用钥匙能打开锁一样!

image.png|400

简单来说:

  • 矩阵求逆就是找到一个"撤销"操作
  • 就像脱衣服能撤销穿衣服
  • 就像除法能撤销乘法
  • 这就是为什么它像一把钥匙!

3. 如何得到逆矩阵:

对于矩阵 A = [ a b c d ] A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} A=[acbd],其逆矩阵的计算步骤如下:

  1. 计算行列式
    首先计算矩阵A的行列式 ∣ A ∣ |A| A
    ∣ A ∣ = a d − b c |A| = ad - bc A=adbc

在这个例子中:
∣ A ∣ = ( 3 × − 2 ) − ( 2 × 1 ) = − 6 − 2 = − 8 |A| = (3 \times -2) - (2 \times 1) = -6 - 2 = -8 A=(3×2)(2×1)=62=8

  1. 计算伴随矩阵
  • 首先写出原矩阵的代数余子式矩阵:
    [ − 2 − 2 − 1 3 ] \begin{bmatrix} -2 & -2 \\ -1 & 3 \end{bmatrix} [2123]

  • 转置得到伴随矩阵:
    [ − 2 − 1 − 2 3 ] \begin{bmatrix} -2 & -1 \\ -2 & 3 \end{bmatrix} [2213]

  1. 求逆矩阵
    逆矩阵 A − 1 A^{-1} A1 的计算公式是:
    A − 1 = 1 ∣ A ∣ × 伴随矩阵 A^{-1} = \frac{1}{|A|} \times \text{伴随矩阵} A1=A1×伴随矩阵

代入数值:
A − 1 = 1 − 8 [ − 2 − 1 − 2 3 ] = [ 1 / 4 1 / 4 1 / 8 − 3 / 8 ] A^{-1} = \frac{1}{-8} \begin{bmatrix} -2 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 1/4 & 1/4 \\ 1/8 & -3/8 \end{bmatrix} A1=81[2213]=[1/41/81/43/8]

  1. 验证
    可以验证 A A − 1 = I AA^{-1} = I AA1=I(单位矩阵):
    [ 3 2 1 − 2 ] [ 1 / 4 1 / 4 1 / 8 − 3 / 8 ] = [ 1 0 0 1 ] \begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1/4 & 1/4 \\ 1/8 & -3/8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [3122][1/41/81/43/8]=[1001]

所以这就是为什么我们得到:
A − 1 = [ 1 / 4 1 / 4 1 / 8 − 3 / 8 ] A^{-1} = \begin{bmatrix} 1/4 & 1/4 \\ 1/8 & -3/8 \end{bmatrix} A1=[1/41/81/43/8]

这个过程虽然看起来复杂,但对于2×2矩阵,只要记住:

  1. 计算行列式
  2. 求代数余子式矩阵
  3. 转置得到伴随矩阵
  4. 用1/行列式 乘以伴随矩阵

这四个步骤就可以了。

3. 矩阵求逆解方程案例一

image.png

让我们通过一个具体案例来学习矩阵求逆解方程:

  1. 原始方程组
    考虑以下方程组:
    3 x + 2 y = 12 x − 2 y = 0 \begin{aligned} 3x + 2y &= 12 \\ x - 2y &= 0 \end{aligned} 3x+2yx2y=12=0

  2. 转换为矩阵形式
    将方程组写成矩阵形式:
    [ 3 2 1 − 2 ] [ x y ] = [ 12 0 ] \begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 \\ 0 \end{bmatrix} [3122][xy]=[120]

  3. 求解过程

    • 设系数矩阵为 A A A,则:
      A = [ 3 2 1 − 2 ] A = \begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix} A=[3122]

    • 其逆矩阵为:
      A − 1 = [ 1 / 4 1 / 4 1 / 8 − 3 / 8 ] A^{-1} = \begin{bmatrix} 1/4 & 1/4 \\ 1/8 & -3/8 \end{bmatrix} A1=[1/41/81/43/8]

  4. 得到结果

    • 解为: X = A − 1 B X = A^{-1}B X=A1B
      [ x y ] = [ 1 / 4 1 / 4 1 / 8 − 3 / 8 ] [ 12 0 ] \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1/4 & 1/4 \\ 1/8 & -3/8 \end{bmatrix} \begin{bmatrix} 12 \\ 0 \end{bmatrix} [xy]=[1/41/81/43/8][120]

    • 计算得到:
      [ x y ] = [ 4 2 ] \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} [xy]=[42]

  5. 验证结果
    x = 4 x = 4 x=4, y = 2 y = 2 y=2 代入原方程:

    • 3 ( 4 ) + 2 ( 2 ) = 12 + 4 = 16 = 12 3(4) + 2(2) = 12 + 4 = 16 = 12 3(4)+2(2)=12+4=16=12
    • 4 − 2 ( 2 ) = 4 − 4 = 0 4 - 2(2) = 4 - 4 = 0 42(2)=44=0

这个例子展示了如何使用矩阵求逆来解决二元线性方程组。关键步骤是:

  1. 将方程组转换为矩阵形式
  2. 求出系数矩阵的逆矩阵
  3. 用逆矩阵乘以常数项得到解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Agent首席体验官

您的打赏是我继续创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值