1. 背景
矩阵倒置最常见的应用之一就是用来解线性方程组。我们可以通过矩阵的逆来求解方程组的解。
例子: 假设有一个方程组:
2 x + 3 y = 5 4 x − y = 3 \begin{aligned} 2x + 3y = 5 \\ 4x - y = 3 \end{aligned} 2x+3y=54x−y=3
我们可以将这个方程组表示为矩阵形式:
[ 2 3 4 − 1 ] [ x y ] = [ 5 3 ] \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix} [243−1][xy]=[53]
然后,我们可以通过计算矩阵的逆来找到 x x x和 y y y 的值。
2. 为什么可以计算矩阵的逆来找到 x x x和 y y y 的值?
-
想象方程组是一把锁
- 你有两个未知数(x 和 y)被"锁"住了
- 锁上写着两个条件:
2 x + 3 y = 5 4 x − y = 3 \begin{aligned} 2x + 3y &= 5 \\ 4x - y &= 3 \end{aligned} 2x+3y4x−y=5=3
-
矩阵求逆就像找到开锁的钥匙
- 每把锁都有它专门的钥匙
- 这把锁可以写成矩阵形式:
[ 2 3 4 − 1 ] [ x y ] = [ 5 3 ] \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix} [243−1][xy]=[53]
-
用钥匙开锁就能找到答案
- 当我们用对了钥匙(矩阵求逆),得到:
[ x y ] = [ 1 1 ] \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} [xy]=[11] - 也就是 x = 1 x = 1 x=1, y = 1 y = 1 y=1
- 当我们用对了钥匙(矩阵求逆),得到:
让我用三个简单的例子来解释为什么矩阵求逆像钥匙:
-
穿衣服的例子
- 穿上毛衣:这是一个动作
- 脱掉毛衣:这是反向动作(能把你恢复原样)
- 脱衣服就像是"求逆",它能撤销穿衣服的动作
-
数字的例子
- 把 10 10 10 乘以 2 2 2 得到 20 20 20
- 把 20 20 20 除以 2 2 2 得到 10 10 10
- 除法就是乘法的"求逆",能把数字恢复原样
-
所以,矩阵求逆也是这个道理
- 原始方程经过矩阵变换得到: A X = B AX = B AX=B
- 用逆矩阵就能"撤销"得到: X = A − 1 B X = A^{-1}B X=A−1B
- 就像用钥匙能打开锁一样!
简单来说:
- 矩阵求逆就是找到一个"撤销"操作
- 就像脱衣服能撤销穿衣服
- 就像除法能撤销乘法
- 这就是为什么它像一把钥匙!
3. 如何得到逆矩阵:
对于矩阵 A = [ a b c d ] A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} A=[acbd],其逆矩阵的计算步骤如下:
- 计算行列式
首先计算矩阵A的行列式 ∣ A ∣ |A| ∣A∣:
∣ A ∣ = a d − b c |A| = ad - bc ∣A∣=ad−bc
在这个例子中:
∣
A
∣
=
(
3
×
−
2
)
−
(
2
×
1
)
=
−
6
−
2
=
−
8
|A| = (3 \times -2) - (2 \times 1) = -6 - 2 = -8
∣A∣=(3×−2)−(2×1)=−6−2=−8
- 计算伴随矩阵
-
首先写出原矩阵的代数余子式矩阵:
[ − 2 − 2 − 1 3 ] \begin{bmatrix} -2 & -2 \\ -1 & 3 \end{bmatrix} [−2−1−23] -
转置得到伴随矩阵:
[ − 2 − 1 − 2 3 ] \begin{bmatrix} -2 & -1 \\ -2 & 3 \end{bmatrix} [−2−2−13]
- 求逆矩阵
逆矩阵 A − 1 A^{-1} A−1 的计算公式是:
A − 1 = 1 ∣ A ∣ × 伴随矩阵 A^{-1} = \frac{1}{|A|} \times \text{伴随矩阵} A−1=∣A∣1×伴随矩阵
代入数值:
A
−
1
=
1
−
8
[
−
2
−
1
−
2
3
]
=
[
1
/
4
1
/
4
1
/
8
−
3
/
8
]
A^{-1} = \frac{1}{-8} \begin{bmatrix} -2 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 1/4 & 1/4 \\ 1/8 & -3/8 \end{bmatrix}
A−1=−81[−2−2−13]=[1/41/81/4−3/8]
- 验证
可以验证 A A − 1 = I AA^{-1} = I AA−1=I(单位矩阵):
[ 3 2 1 − 2 ] [ 1 / 4 1 / 4 1 / 8 − 3 / 8 ] = [ 1 0 0 1 ] \begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1/4 & 1/4 \\ 1/8 & -3/8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [312−2][1/41/81/4−3/8]=[1001]
所以这就是为什么我们得到:
A
−
1
=
[
1
/
4
1
/
4
1
/
8
−
3
/
8
]
A^{-1} = \begin{bmatrix} 1/4 & 1/4 \\ 1/8 & -3/8 \end{bmatrix}
A−1=[1/41/81/4−3/8]
这个过程虽然看起来复杂,但对于2×2矩阵,只要记住:
- 计算行列式
- 求代数余子式矩阵
- 转置得到伴随矩阵
- 用1/行列式 乘以伴随矩阵
这四个步骤就可以了。
3. 矩阵求逆解方程案例一
让我们通过一个具体案例来学习矩阵求逆解方程:
-
原始方程组
考虑以下方程组:
3 x + 2 y = 12 x − 2 y = 0 \begin{aligned} 3x + 2y &= 12 \\ x - 2y &= 0 \end{aligned} 3x+2yx−2y=12=0 -
转换为矩阵形式
将方程组写成矩阵形式:
[ 3 2 1 − 2 ] [ x y ] = [ 12 0 ] \begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 \\ 0 \end{bmatrix} [312−2][xy]=[120] -
求解过程
-
设系数矩阵为 A A A,则:
A = [ 3 2 1 − 2 ] A = \begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix} A=[312−2] -
其逆矩阵为:
A − 1 = [ 1 / 4 1 / 4 1 / 8 − 3 / 8 ] A^{-1} = \begin{bmatrix} 1/4 & 1/4 \\ 1/8 & -3/8 \end{bmatrix} A−1=[1/41/81/4−3/8]
-
-
得到结果
-
解为: X = A − 1 B X = A^{-1}B X=A−1B
[ x y ] = [ 1 / 4 1 / 4 1 / 8 − 3 / 8 ] [ 12 0 ] \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1/4 & 1/4 \\ 1/8 & -3/8 \end{bmatrix} \begin{bmatrix} 12 \\ 0 \end{bmatrix} [xy]=[1/41/81/4−3/8][120] -
计算得到:
[ x y ] = [ 4 2 ] \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} [xy]=[42]
-
-
验证结果
将 x = 4 x = 4 x=4, y = 2 y = 2 y=2 代入原方程:- 3 ( 4 ) + 2 ( 2 ) = 12 + 4 = 16 = 12 3(4) + 2(2) = 12 + 4 = 16 = 12 3(4)+2(2)=12+4=16=12 ✓
- 4 − 2 ( 2 ) = 4 − 4 = 0 4 - 2(2) = 4 - 4 = 0 4−2(2)=4−4=0 ✓
这个例子展示了如何使用矩阵求逆来解决二元线性方程组。关键步骤是:
- 将方程组转换为矩阵形式
- 求出系数矩阵的逆矩阵
- 用逆矩阵乘以常数项得到解