hdoj多校 Deliver the Cake(拆点+dijkstra)

在这里插入图片描述
在这里插入图片描述

题意:

有n个点,m条边的无向带权图,每一个点都有一个字母类型,每个点的类型有三种L,R,M。
L能转R,R转L,且需要花费x。
从L结点到R结点需要多花费x(要转换),L或R结点到M结点,M结点可以为R结点也可以为L结点,所以 在进过M结点时你要选择是变R还是L。
所以要进行拆点。

注意: 当起点为M时,你需要增加一个0结点,连接到起点拆分之后的两个结点。当终点为M时,同理增加一个2*n+1结点连接终点拆分之后的两个结点。

拆分:

若u和v结点状态同时为L或R: 在u和v之间连一条权值为w的无向边。
若u为L,v为R: 在u和v之间连一条权值为w+x的无向边。
若v为L,u为R: 在u和v之间连一条权值为w+x的无向边。
若u为L,u为M: 在u和v之间连一条权值为w的无向边。同时在u和v+n之间连一条权值为w+x的无向边。(v为L,v+n为R)
若u为M,v为L: 在u和v之间连一条权值为w的无向边。同时在u+n和v之间连一条权值为w+x的无向边。
若u为R,u为M: 在u和v之间连一条权值为w+x的无向边。同时在u和v+n之间连一条权值为w的无向边。
若u为M,u为R: 在u和v之间连一条权值为w+x的无向边。同时在u+n和v之间连一条权值为w的无向边。
若u为M,u为M: 在u和v之间连一条权值为w的无向边。 在u+n和v+n之间连一条权值为w的无向边。在u+n和v之间连一条权值为w+x的无向边。在u和v+n之间连一条权值为w+x的无向边。

代码:

#include <bits/stdc++.h>

#define ll long long
using namespace std;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=1e5+1;
typedef struct Edge{
    int to;
    ll value;

}ed;
struct s1
{
    int q1;
    int we;
    friend bool operator <(s1 z,s1 x)
    {
        return z.we>x.we;
    }
};
vector<ed> e[N];
int dis[100001];
int visit[100001];
char f[N];
void djstl(int s,int t,int n)
{
    int qd=0;
    if(f[s]=='M') dis[0]=0,qd=0;
    else dis[s]=0,qd=s;
    priority_queue<s1>qq;
    s1 node;
    node.q1=qd;
    node.we=dis[qd];
    qq.push(node);
    visit[qd]=1;
    while(!qq.empty()){
        node=qq.top();
        qq.pop();
        qd=node.q1;
        visit[qd]=1;
        for (int i=0;i<e[qd].size();i++){
            ed edg=e[qd][i];
            if(dis[edg.to]>dis[qd]+edg.value&&!visit[edg.to]){
                dis[edg.to]=dis[qd]+edg.value;
                node.q1=edg.to;
                node.we=dis[edg.to];
                qq.push(node);
            }

        }
        node=qq.top();
        while(visit[node.q1]&&!qq.empty()) qq.pop(),node=qq.top();


    }
    if(f[t]=='M') cout<<dis[2*n+1];
    else cout<<dis[t];
}
int main()
{
    ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);
    int t;
    cin>>t;
    while(t--){
        int n,m,s,t,x;
        cin>>n>>m>>s>>t>>x;
        scanf("%s",f+1);
        for (int i=0;i<=2*n+1;i++) dis[i]=INF,visit[i]=0,e[i].clear();
        if(f[s]=='M'){
            e[s].push_back(ed{0,0});
            e[s+n].push_back(ed{0,0});
            e[0].push_back(ed{s,0});
            e[0].push_back(ed{s+n,0});
        }
        if(f[t]=='M'){
            e[t].push_back(ed{2*n+1,0});
            e[t+n].push_back(ed{2*n+1,0});
            e[2*n+1].push_back(ed{t,0});
            e[2*n+1].push_back(ed{t+n,0});
        }
        for (int i=0;i<m;i++){
            int a,b,d;
            cin>>a>>b>>d;
            if((f[a]=='L'&&f[b]=='L')||(f[a]=='R'&&f[b]=='R')){
                 e[a].push_back(ed{b,d});
                 e[b].push_back(ed{a,d});
            }
            if((f[a]=='L'&&f[b]=='R')||(f[a]=='R'&&f[b]=='L')){
                e[a].push_back(ed{b,d+x});
                e[b].push_back(ed{a,d+x});
            }
            if(f[a]=='L'&&f[b]=='M'){
                e[a].push_back(ed{b,d});
                e[a].push_back(ed{b+n,d+x});
                e[b].push_back(ed{a,d});
                e[b+n].push_back(ed{a,d+x});
            }
            if(f[a]=='R'&&f[b]=='M'){
                e[a].push_back(ed{b,d+x});
                e[a].push_back(ed{b+n,d});
                e[b].push_back(ed{a,d+x});
                e[b+n].push_back(ed{a,d});
            }
            if(f[a]=='M'&&f[b]=='L'){
                e[b].push_back(ed{a,d});
                e[b].push_back(ed{a+n,d+x});
                e[a].push_back(ed{b,d});
                e[a+n].push_back(ed{b,d+x});
            }
            if(f[a]=='M'&&f[b]=='R'){
                e[b].push_back(ed{a,d+x});
                e[b].push_back(ed{a+n,d});
                e[a].push_back(ed{b,d+x});
                e[a+n].push_back(ed{b,d});
            }
            if(f[a]=='M'&&f[b]=='M'){
                e[b].push_back(ed{a,d});
                e[b].push_back(ed{a+n,d+x});
                e[b+n].push_back(ed{a,d+x});
                e[b+n].push_back(ed{a+n,d});
                e[a].push_back(ed{b,d});
                e[a].push_back(ed{b+n,d+x});
                e[a+n].push_back(ed{b,d+x});
                e[a+n].push_back(ed{b+n,d});
            }

        }
        djstl(s,t,n);
        cout<<endl;

    }

}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值