素数快速筛选法+埃式筛法+欧拉筛

思路:

首先先把所有的奇数都假设为素数,偶数都为合数(除2外),剩下的奇数如果是合数的话,那么该奇数一定是某个比它小的奇数的倍数

举例:
求n以内的素数
首先把 1 3 5 7 9 11 13 15 17…假设为素数
然后从3开始一直到n 判断某个数是否为素数,如果为素数就将它依次乘以2,3…所得到的结果(不超过n)置为素数,如果该数不是素数,则不需要进行乘2,3… 因为该数的倍数 会由该数的某个素数因数判断其为合数得来。

**

代码

**

#include <bits/stdc++.h>

#define ll long long
using namespace std;

int prim[1001];
int main()
{
    int n;
    cin>>n;
    memset(prim,0,sizeof(prim));
    prim[1]=1;// 1是素数
    prim[2]=1;// 2也是素数
    for (int i=3;i<=n;i++){
        if(i%2) prim[i]=1;   //先把所有奇数的看为是素数
    }
    //奇数如果是合数 那么该奇数的因数应该是某个奇数的倍数
    //去去除奇数中的合数
    //超过sqrt(n)的数不需要再求的倍数 因为他的倍数为x 且x不超过n的话
    //则x的另一个因数会小于sqrt(n)
    for (int i=3;i<=sqrt(n);i++){
        if(prim[i]){
            for (int j=i+i;j<=n;j+=i){
                prim[j]=0;
            }
        }
    }
    for (int i=1;i<=n;i++){
        if(prim[i]) cout<<i<<" ";
    }
}

埃式筛法

埃氏筛法的基本思想 :从2开始,将每个质数的倍数都标记成合数,以达到筛选素数的目的。
算法复杂度:O(nloglogn)

有一些数论的题可以根据埃式筛法的思想来解

memset(prime,0,sizeof(prime));
    for (int i=2;i<=Maxn;i++)
    {
        if(!prime[i])
        {
            //j从i*i开始因为 i*(2~i-1)的数已经记录了
            for (int j=i*i;j<=Maxn;j+=i)
            {
                prime[j]=1;
            }
        }
    }
    for (int i=2;i<=Maxn;i++)
    {
        if(!prime[i]) cout<<i<<" ";
    }
    cout<<endl;

欧拉筛 O(n)
欧拉筛法的基本思想 :在埃氏筛法的基础上,让每个合数只被它的最小质因子筛选一次,以达到不重复的目的

#include<bits/stdc++.h>

#define ll long long
using namespace std;
const int Maxn=1e7+1;
int n;
int prime[Maxn];//记录素数
int cnt;//记录素数的个数
int vis[Maxn];//记录是否为素数

int  main()
{
    memset(prime,0,sizeof(prime));
    memset(vis,0,sizeof(vis));
    for (int i=2;i<=Maxn;i++)
    {
        if(!vis[i])
        {
            prime[++cnt]=i;
        }
        for (int j=1;j<=cnt&&i*prime[j]<=Maxn;j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0) break;
        }
    }
    for (int i=2;i<=Maxn;i++)
    {
        if(!vis[i]) cout<<i<<" ";
    }
    cout<<endl;
}


对于visit[i*prime[j]] = 1 的解释: 这里不是用i的倍数来消去合数,而是把 prime里面纪录的素数,升序来当做要消去合数的最小素因子。

对于 i%prime[j] == 0 就break的解释 :当 i是prime[j]的倍数时,i = kprime[j],如果继续运算 j+1,i * prime[j+1] = prime[j] * k prime[j+1],这里prime[j]是最小的素因子,当i = k * prime[j+1]时会重复,所以才跳出循环。
举个例子 :i = 8 ,j = 1,prime[j] = 2,如果不跳出循环,prime[j+1] = 3,8 * 3 = 2 * 4 * 3 = 2 * 12,在i = 12时会计算。因为欧拉筛法的原理便是通过最小素因子来消除。

埃式筛法+欧拉筛转载自:csdn博客

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值