# 【模板】轻重链剖分+线段树

#include <bits/stdc++.h>

#define ll long long

using namespace std;
int next[500001];
int to[500001];
int cnt;

int son[500001];//求重儿子
int fa[500001];//父亲结点
int tol[500001];//子节点个数
int dep[500001];//深度

int dfn[500001];//dfs序列
int rnk[500001];//dfs序列所对应的元素
int top[500001];//链的顶端
int treev[4*500001];

int value[500001];
int n,m,r,p;

int lazy[4*500001];
void pushdown(int l,int r,int x);

int query(int l,int r,int lx,int ly,int x);
{
to[cnt]=v;
}
void dfs1(int u,int v)
{
son[u]=-1;
tol[u]=1;
fa[u]=v;
dep[u]=dep[v]+1;
{
int t=to[i];
if(t==v) continue ;
dfs1(t,u);
tol[u]+=tol[t];
if(son[u]==-1||(tol[t]>tol[son[u]])) son[u]=t;
}
}
void dfs2(int u,int t) //t为链的顶端
{
top[u]=t;
dfn[u]=++cnt;
rnk[cnt]=u;
if(son[u]==-1) return ;
dfs2(son[u],t);
{
if(to[i]!=fa[u]&&to[i]!=son[u]) //不为父亲和重儿子
dfs2(to[i],to[i]); //轻链顶端就是本身
}
}
void build(int l,int r,int x)
{
if(l==r)
{
treev[x]=value[rnk[l]]%p;
return ;
}
int mid=l+r>>1;
build(l,mid,x<<1);
build(mid+1,r,x<<1|1);
treev[x]=(treev[x<<1]+treev[x<<1|1])%p;
}
void update1(int l,int r,int lx,int ly,int x,int z)
{
if(lx<=l&&r<=ly)
{
treev[x]+=z*(r-l+1);
lazy[x]+=z;
return ;
}
int mid=l+r>>1;
if(lazy[x]) pushdown(l,r,x);
if(lx<=mid) update1(l,mid,lx,ly,x<<1,z);
if(ly>mid) update1(mid+1,r,lx,ly,x<<1|1,z);
treev[x]=(treev[x<<1]+treev[x<<1|1])%p;

}
void lca(int x,int y,int z)
{
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]])

{

update1(1,n,dfn[top[y]],dfn[y],1,z);
y=fa[top[y]];
}
else
{

update1(1,n,dfn[top[x]],dfn[x],1,z);
x=fa[top[x]];

}
}
if(dep[x]<dep[y])
update1(1,n,dfn[x],dfn[y],1,z);
else
update1(1,n,dfn[y],dfn[x],1,z);
}
int sum(int x,int y)
{
int ans=0;
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]])
{

ans+=query(1,n,dfn[top[y]],dfn[y],1);
ans=ans%p;
y=fa[top[y]];
}
else

{

ans+=query(1,n,dfn[top[x]],dfn[x],1);
ans=ans%p;
x=fa[top[x]];
}
}
if(dep[x]<dep[y])
ans+=query(1,n,dfn[x],dfn[y],1);
else
ans+=query(1,n,dfn[y],dfn[x],1);
return ans%p;;
}
void pushdown(int l,int r,int x)
{
lazy[x<<1]=(lazy[x<<1]+lazy[x])%p;
lazy[x<<1|1]=(lazy[x<<1|1]+lazy[x])%p;
treev[x<<1]=(treev[x<<1]+lazy[x]*((l+r>>1)-l+1))%p;
treev[x<<1|1]=(treev[x<<1|1]+lazy[x]*(r-(l+r>>1)))%p;
lazy[x]=0;
}
int query(int l,int r,int lx,int ly,int x)
{
if(lx<=l&&r<=ly)
{
//  cout<<treev[x]<<endl;
return treev[x];

}
int mid=l+r>>1;
int ans=0;
if(lazy[x]) pushdown(l,r,x);
if(lx<=mid) ans=(ans+query(l,mid,lx,ly,x<<1))%p;
if(ly>mid) ans=(ans+query(mid+1,r,lx,ly,x<<1|1))%p;
return ans;
}
int main()
{
cin>>n>>m>>r>>p;
for (int i=1;i<=n;i++)
{
cin>>value[i];
}
for (int i=0;i<n-1;i++)
{
int a,b;
cin>>a>>b;
}
dfs1(r,r);
cnt=0;
dfs2(r,r);
build(1,n,1);
for (int i=0;i<m;i++)
{
int op;
cin>>op;
if(op==1)
{
int x,y,z;
cin>>x>>y>>z;
lca(x,y,z);
}
else if(op==2)
{
int x,y;
cin>>x>>y;
cout<<sum(x,y)<<endl;
}
else if(op==3)
{
int x,z;
cin>>x>>z;
// cout<<dfn[x]<<"      "<<tol[x]<<endl;
int y=dfn[x]+tol[x]-1;
update1(1,n,dfn[x],y,1,z);
}
else{
int x;
cin>>x;
int y=dfn[x]+tol[x]-1;
cout<<query(1,n,dfn[x],y,1)<<endl;
}
}

}


• 0
点赞
• 0
收藏
觉得还不错? 一键收藏
• 0
评论
10-30
01-30 191
07-19 405
09-03
12-14 634
03-19 1046
07-31 364
04-19

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。