前言
此系列博客为博主在AcWing算法基础课的学习笔记,不足之处欢迎批评指正,本文为整数二分算法。
一、整数二分模板
bool check(int x) {/* ... */} // 检查x是否满足某种性质
// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
while (l < r)
{
int mid = l + r >> 1;
// check()判断mid是否满足性质
if (check(mid)) r = mid;
else l = mid + 1;
}
return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
while (l < r)
{
int mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return l;
}
二、整数二分算法思想
如上图所示,假设X、Y为某种性质的分界点,二分查找可能是找X或者找Y,举个例子,比如大于5的第一个数。二分查找是比较容易出错的算法,需要仔细推敲。
(1)寻找具有红色性质的边界X,那么 mid = (L + R + 1) / 2
if(check(mid)) 来判断mid是否具有红色性质
①若为true,说明mid在红色区,则要查找的边界X必然在【mid,R】中,更新 L = R;
②若为false,说明mid不在红色区,则X必然在【L, mid - 1】,更新 R = mid - 1。
(2)寻找具有黑色性质的边界Y,那么mid=(L + R) / 2
if(check(mid)) 来判断mid是否具有黑色性质
①若为true,mid在黑色区域,Y必然在【L,mid】中,更新 R = mid;
②若为false,mid不在黑色区域,Y必然在【mid + 1,R】,更新 L = mid + 1。
那么,关键点来了,为什么寻找具有红色性质的边界X, mid = (L + R + 1) / 2 ?
可以这么理解,对于mid = L+ R / 2来说,若L = R - 1,则mid = L,那么更新的区间为【mid, R】时,【mid, R】=【L, R】,未起到更新效果,这将导致死循环。所以 mid = (L + R + 1) / 2,此时若L = R - 1,mid = R,区间更新为【R, R】,循环终止。
三、整数二分模板题
1.题目要求
给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。
对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0 开始计数)。
如果数组中不存在该元素,则返回 -1 -1。
输入格式
第一行包含整数 n 和 q,表示数组长度和询问个数。
第二行包含 n 个整数(均在 1∼10000 范围内),表示完整数组。
接下来 q 行,每行包含一个整数 k,表示一个询问元素。
输出格式
共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在该元素,则返回 -1 -1。
数据范围
1≤n≤100000
1≤q≤10000
1≤k≤10000
输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1
2.题解
代码如下(示例):
#include <iostream>
using namespace std;
const int N = 1e5 + 10;
int n, m;
int q[N];
int main ()
{
scanf("%d%d", &n, &m);
for(int i = 0; i < n; i++) scanf("%d", &q[i]);
while (m--)
{
int x;
scanf("%d", &x);
int l = 0, r = n - 1;
//先找起始位置的x
while (l < r)
{
//先写int mid = l + r >> 1,要不要加1后面再根据划分区间判断
int mid = l + r >> 1;
//设定用来判断的性质为是否大于等于x,则要找的起始位置x为第一个满足该性质的元素,类似寻找上面图示中寻找黑色的Y
//判断q[mid]是否有这个性质,若有说明要找的x在mid左边或者为mid
//这样直接更新r = mid即可
//既然这样,那么划分的区间为【L,mid】和【mid + 1, R】
//可以推出mid = l + r >> 1,不需要加1
if (q[mid] >= x) r = mid;
else l = mid + 1;
}
if (q[l] != x) cout << "-1 -1" << endl;
else
{
//这里输出l和r都可因为循环终止时l和r是重叠的
cout << l << ' ';
//找到了起始位置的x,接下来找终止的x
//设定性质为是否小于等于x,则这次要找的x为最后一个满足该性质的元素
//类似于上文图示中寻找红色的X
int i = 0, r = n - 1;
while(l < r)
{
//先写int mid = l + r >> 1,要不要加1后面再根据划分区间判断
int mid = l + r + 1 >> 1;
//由于区间划分为【L,mid】和【mid - 1,R】
//所以mid = l + r >> 1还得加1
if (q[mid] <= x) l = mid;
else r = mid - 1;
}
cout << l << endl;
}
}
return 0;
}
总结
先假定一个用来二分的性质,看看二分的情况是图示中的X还是Y;
在根据划分区间来进一步判断mid表达式里要不要加上1;
二分划分区间为【L, mid - 1】【mid,R】时,mid = (L + R + 1) / 2;
二分划分区间为【L, mid】【mid + 1,R】时,mid=(L + R) / 2。