这部分笔记为leetcode《数组和字符串》的刷题笔记,过于简单的题目没有记录
35. 搜索插入位置
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。
示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2
示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1
示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4
提示:
1 <= nums.length <= 10^4
-10^4 <= nums[i] <= 10^4
nums 为 无重复元素 的 升序 排列数组
-10^4 <= target <= 10^4
掌握思路一(二分)
- 题目中说必须用 log n 复杂度的算法,首先想到的就是二分
- 题中没找到也要返回一个插入的位置,可以统一处理,找到第一个大于等于target的数的位置即可
- 没有找到则返回末尾的位置 n 即可
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int n = nums.size();
int left = 0;
int right = n - 1;
while (left < right) {
int mid = (left + right) >> 1;
if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid;
}
}
if (nums[left] < target) return n;
return left;
}
};
56. 合并区间
以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。
示例 1:
输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2:
输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。
提示:
1 <= intervals.length <= 10^4
intervals[i].length == 2
0 <= starti <= endi <= 10^4
掌握思路一(排序)
- 这题又让我想起了数组的题目先排序一下会不会更好做
- 数组类型的数组排序默认按子数组的第一个元素排序
- 熟悉
back()
的用法,快速获取到数组的最后一个元素
class Solution {
public:
vector<vector<int>> merge(vector<vector<int>>& intervals) {
int n = intervals.size();
if (n == 0) return intervals;
sort(intervals.begin(), intervals.end()); //排序后左端点比较好判断
vector<vector<int>> res;
for (int i = 0; i < n; i++) {
int L = intervals[i][0]; //区间左端点
int R = intervals[i][1]; //区间右端点
if (!res.size() || res.back()[1] < L) //res为空或新区间左端点比原右端点值大说明无交集
res.push_back({L, R}); //加入到结果集当中去
else
res.back()[1] = max(res.back()[1], R); //合并区间,更新结果集最后一个元素
}
return res;
}
};
48. 旋转图像
给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。
你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例 1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]
示例 2:
输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
提示:
n == matrix.length == matrix[i].length
1 <= n <= 20
-1000 <= matrix[i][j] <= 1000
掌握思路一(翻转代替旋转)
- 旋转矩阵,由于翻转更容易实现,考虑转化成翻转来做
- 先上下对称翻转,再对角线对称翻转
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
//step 1 沿着水平轴翻转
for (int i = 0; i < n / 2; i++)
for (int j = 0; j < n; j++)
swap (matrix[i][j], matrix[n - 1 - i][j]);
//step 2 沿着对角线翻转
for (int i = 0; i < n; i++)
for (int j = 0; j < i; j++)
swap (matrix[i][j], matrix[j][i]);
}
};
掌握思路二(辅助数组)
- 用一个辅助数组存结果
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
auto matrix_new = matrix;
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
matrix_new[j][n - i - 1] = matrix[i][j];
matrix = matrix_new;
}
};
面试题 01.08. 零矩阵
编写一种算法,若M × N矩阵中某个元素为0,则将其所在的行与列清零。
示例 1:
输入:
[
[1,1,1],
[1,0,1],
[1,1,1]
]
输出:
[
[1,0,1],
[0,0,0],
[1,0,1]
]
示例 2:
输入:
[
[0,1,2,0],
[3,4,5,2],
[1,3,1,5]
]
输出:
[
[0,0,0,0],
[0,4,5,0],
[0,3,1,0]
]
掌握思路一(标记数组)
- 记住初始化二维数组为0的写法
memset(matrix_flag, 0, sizeof(matrix_flag));
- 官方题解的标记数组为
vector<int> row(m), col(n);
class Solution {
public:
void setZeroes(vector<vector<int>>& matrix) {
int m = matrix.size(); //m行
int n = matrix[0].size(); //n列
int matrix_flag[m][n]; //此处不能初始化否则会保存
memset(matrix_flag, 0, sizeof(matrix_flag));
//flag数组判断是否要对该位置所在行列置0
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == 0) {
matrix_flag[i][j] = 1;
}
}
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix_flag[i][j] == 1) {
for (int k = 0; k < n; k++) matrix[i][k] = 0;
for (int k = 0; k < m; k++) matrix[k][j] = 0;
}
}
}
}
};
498. 对角线遍历
给你一个大小为 m x n 的矩阵 mat ,请以对角线遍历的顺序,用一个数组返回这个矩阵中的所有元素。
示例 1:
输入:mat = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,4,7,5,3,6,8,9]
示例 2:
输入:mat = [[1,2],[3,4]]
输出:[1,2,3,4]
提示:
m == mat.length
n == mat[i].length
1 <= m, n <= 10^4
1 <= m * n <= 10^4
-105 <= mat[i][j] <= 10^5
掌握思路一(遍历对角线)
- 这题做了非常久
class Solution {
public:
vector<int> findDiagonalOrder(vector<vector<int>>& mat) {
vector<int> res; //res用来保存结果
int m = mat.size(); //m行
int n = mat[0].size(); //n列
//按照对角线来遍历,总共有m+n-1条对角线,第一行与最后一列可以标识出每一对角线,这里称为标识点
//用i从0开始遍历对角线,第i条对角线的这个i正好可以表示为该对角线所有元素的下标和
//也就是对角线上只要知道对角线和以及横纵坐标其一即可确定一点
int i = 0;
while (i < m + n) {
//奇数趟,左下到右上
int x1 = (i < m) ? i : m - 1; //确定初始点
int y1 = i - x1;
while (x1 >= 0 && y1 < n) {
res.push_back(mat[x1][y1]);
x1--; //左下到右上,行减列增
y1++; //一减一加维持在同一对角线
}
i++;
if (i > m + n - 1) break;
//偶数趟,右上到左下
int y2 = (i < n) ? i : n - 1;
int x2 = i - y2;
while (y2 >= 0 && x2 < m) {
res.push_back(mat[x2][y2]);
x2++;
y2--;
}
i++;
}
return res;
}
};
5. 最长回文子串
给你一个字符串 s,找到 s 中最长的回文子串。
示例 1:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
示例 2:
输入:s = "cbbd"
输出:"bb"
提示:
1 <= s.length <= 1000
s 仅由数字和英文字母组成
掌握思路一(暴力循环)
- 由于字符串长度小于1000,因此我们可以用 O(n^2) 的算法枚举所有可能的情况
- 首先枚举回文串的中心 i,然后分两种情况(回文串长度为奇数/偶数)向两边扩展边界,直到遇到不同字符为止
class Solution {
public:
string longestPalindrome(string s) {
int res_len = 0;
string res;
int n = s.size();
for (int i = 0; i < n; i++) {
//回文串是奇数长度,j表示向外扩展的长度
//从第i个位置逐渐向外扩展j个长度
for (int j = 0; i - j >= 0 && i + j < n; j++) {
if (s[i - j] == s[i + j]) {
//扩展的位置符合回文串的条件,判断此时长度是否最大
if (2 * j + 1 > res_len) {
//最大则要更新结果串
res_len = 2 * j + 1;
res = s.substr(i - j, res_len);
}
}
else break; //不满足回文串的定义直接退出该点的拓展循环
}
//回文串是偶数长度,j和k表示向外扩展的位置
for (int j = i, k = i + 1; j >= 0 && k < n; j--, k++) {
if (s[j] == s[k]) {
//扩展的位置符合回文串的条件,判断此时长度是否最大
if (k - j + 1 > res_len) {
res_len = k - j + 1;
res = s.substr (j, res_len);
}
}
else break;
}
}
return res;
}
};
掌握思路二(动态规划)
- 回顾DP 问题一般步骤
- 定义dp数组中的
dp[i]
; - 找dp数组间的关系式(核心)
- 写出不能由关系式计算得到的初始边界值
- 定义dp数组中的
- 这题的dp思路为
- 定义dp数组中的
dp[i]
:这里要用二维,dp[i][j]
表示字符串s的第i到j个字母组成的串是否为回文串,字串为回文串,自身两端相等则为true
- 找dp数组间的关系式:
dp[i][j] = dp[i + 1][j - 1] && s[i] == s[j]
- 写出不能由关系式计算得到的初始边界值:
dp[i][i] = true
和dp[i][i + 1] = s[i] == s[i + 1]
- 定义dp数组中的
class Solution {
public:
string longestPalindrome(string s) {
int n = s.size();
if (n < 2) {
return s;
}
int maxLen = 1;
int begin = 0;
// dp[i][j] 表示 s[i..j] 是否是回文串
vector<vector<int>> dp(n, vector<int>(n));
// 初始化:所有长度为 1 的子串都是回文串
for (int i = 0; i < n; i++) {
dp[i][i] = true;
}
// 递推开始
// 先枚举子串长度
for (int L = 2; L <= n; L++) {
// 枚举左边界,左边界的上限设置可以宽松一些
for (int i = 0; i < n; i++) {
// 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
int j = L + i - 1;
// 如果右边界越界,就可以退出当前循环
if (j >= n) {
break;
}
if (s[i] != s[j]) {
dp[i][j] = false;
} else {
if (j - i < 3) {
dp[i][j] = true;
} else {
dp[i][j] = dp[i + 1][j - 1];
}
}
// 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
if (dp[i][j] && j - i + 1 > maxLen) {
maxLen = j - i + 1;
begin = i;
}
}
}
return s.substr(begin, maxLen);
}
};
151. 颠倒字符串中的单词
给你一个字符串 s ,颠倒字符串中 单词 的顺序。
单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开。
返回 单词 顺序颠倒且 单词 之间用单个空格连接的结果字符串。
注意:输入字符串 s中可能会存在前导空格、尾随空格或者单词间的多个空格。返回的结果字符串中,单词间应当仅用单个空格分隔,且不包含任何额外的空格。
示例 1:
输入:s = "the sky is blue"
输出:"blue is sky the"
示例 2:
输入:s = " hello world "
输出:"world hello"
解释:颠倒后的字符串中不能存在前导空格和尾随空格。
示例 3:
输入:s = "a good example"
输出:"example good a"
解释:如果两个单词间有多余的空格,颠倒后的字符串需要将单词间的空格减少到仅有一个。
提示:
1 <= s.length <= 10^4
s 包含英文大小写字母、数字和空格 ' '
s 中 至少存在一个 单词
掌握思路一(数组翻转)
- 将每个单词存入数组中,翻转该数组,再用结果串按数组顺序存储所有单词即可
class Solution {
public:
string reverseWords(string s) {
if (!s.size()) return s;
vector<string> v;
int n = s.size();
string res;
int i = 0;
while (i < n) {
string temp;
while(i < n && isalnum(s[i])) { //存入每个单词到数组中
temp += s[i];
i++;
}
if (temp.size()) v.push_back(temp);
i++;
}
reverse (v.begin(), v.end()); //翻转该数组
for (int i = 0; i < v.size(); i++) {
res += v[i];
if (i != v.size() - 1) res += " "; //最后一个单词不用空格
}
return res;
}
};
28. 实现 strStr()
实现 strStr() 函数。
给你两个字符串 haystack 和 needle ,请你在 haystack 字符串中找出 needle 字符串出现的第一个位置(下标从 0 开始)。如果不存在,则返回 -1 。
说明:
当 needle 是空字符串时,我们应当返回什么值呢?这是一个在面试中很好的问题。
对于本题而言,当 needle 是空字符串时我们应当返回 0 。这与 C 语言的 strstr() 以及 Java 的 indexOf() 定义相符。
示例 1:
输入:haystack = "hello", needle = "ll"
输出:2
示例 2:
输入:haystack = "aaaaa", needle = "bba"
输出:-1
示例 3:
输入:haystack = "", needle = ""
输出:0
提示:
1 <= haystack.length, needle.length <= 10^4
haystack 和 needle 仅由小写英文字符组成
掌握思路一(find函数)
- 投机取巧,用
find()
函数
class Solution {
public:
int strStr(string haystack, string needle) {
return haystack.find(needle);
}
};
掌握思路二(暴力做法)
- 挨个判断即可
class Solution {
public:
int strStr(string haystack, string needle) {
int n = haystack.size(), m = needle.size();
for (int i = 0; i + m <= n; i++) {
bool flag = true;
for (int j = 0; j < m; j++) {
if (haystack[i + j] != needle[j]) {
flag = false;
break;
}
}
if (flag) {
return i;
}
}
return -1;
}
};
掌握思路三(KMP算法)
- 在熟练掌握KMP算法之前,就先用暴力去做吧
27. 移除元素
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
说明:
为什么返回数值是整数,但输出的答案是数组呢?
请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。
你可以想象内部操作如下:
// nums 是以“引用”方式传递的。也就是说,不对实参作任何拷贝
int len = removeElement(nums, val);
// 在函数里修改输入数组对于调用者是可见的。
// 根据你的函数返回的长度, 它会打印出数组中 该长度范围内 的所有元素。
for (int i = 0; i < len; i++) {
print(nums[i]);
}
示例 1:
输入:nums = [3,2,2,3], val = 3
输出:2, nums = [2,2]
解释:函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。例如,函数返回的新长度为 2 ,而 nums = [2,2,3,3] 或 nums = [2,2,0,0],也会被视作正确答案。
示例 2:
输入:nums = [0,1,2,2,3,0,4,2], val = 2
输出:5, nums = [0,1,4,0,3]
解释:函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。注意这五个元素可为任意顺序。你不需要考虑数组中超出新长度后面的元素。
提示:
0 <= nums.length <= 100
0 <= nums[i] <= 50
0 <= val <= 100
掌握思路一(快慢指针)
- 快指针找到不为
val
的值赋给慢指针即可
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int n = nums.size();
int slow = 0;
for (int fast = 0; fast < n; fast++) {
if (nums[fast] != val) {
nums[slow] = nums[fast];
slow++;
}
}
return slow;
}
};
掌握思路二(删除法)
- 回顾删除的写法,计数器记录删除个数
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int n = nums.size();
auto it = nums.begin();
int cnt = 0;
while (it != nums.end()) {
if (*it == val) { //*it == val
cnt++;
it = nums.erase(it); //要特别注意这种写法,删除后迭代器指向的是原来删除元素的后一个元素,所以不要多加it++
} else {
it++;
}
}
return n - cnt;
}
};
209. 长度最小的子数组
给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
提示:
1 <= target <= 10^9
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^5
掌握思路一(双指针)
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int n = nums.size();
int res = INT_MAX;
// int max_sum = 0;
for (int i = 0; i < n; i++) {
int len = 0;
int sum = 0;
for (int j = i; j < n; j++) {
if (sum < target) {
sum += nums[j];
len++;
}
if (sum >= target) {
res = min (res, len);
break;
}
if (j == n - 1) break;
}
// max_sum = max (max_sum, sum);
}
// if (max_sum < target) return 0;
if (res == INT_MAX) return 0;
return res;
}
};