机器学习入门训练6-数学入门操作

1.数学中的参数对应到程序里也就是附在每行后面括号里的数,按顺序排,一般前面的较后面的重要,或是前面的参数是后面的前提条件。

x = np.random.normal(0, 1, [1000]) 
y = x ** 2 + x + np.random.normal(0, 0.3, [1000]) 
plt.scatter(x, y) 
plt.show()

2.写公式就是换个英文名、参数提出来一行。

def Cov(x1, x2):
    """协方差"""
    return np.mean((x1-np.mean(x1))*(x2-np.mean(x2)))
def rho(x1, x2):
    """线性相关系数""" 
    return Cov(x1, x2)/np.std(x1)/np.std(x2)
def Normal(x, mu, std):
    """正态分布"""
    return 1/(2*np.pi*std) * np.exp(-(x-mu)**2/(2*std**2))

3.变量保存和矩阵点乘操作

A = np.random.normal(0, 1, [2, 2])
B = np.random.normal(0, 1, [2, 2]) 
np.savez("AB.npz", A=A, B=B)
C = np.dot(A, B)
C = A @ B
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值