Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补全和拼写检查。
请你实现 Trie 类:
Trie() 初始化前缀树对象。
void insert(String word) 向前缀树中插入字符串 word 。
boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
示例:
输入
[“Trie”, “insert”, “search”, “search”, “startsWith”, “insert”, “search”]
[[], [“apple”], [“apple”], [“app”], [“app”], [“app”], [“app”]]
输出
[null, null, true, false, true, null, true]
解释
Trie trie = new Trie();
trie.insert(“apple”);
trie.search(“apple”); // 返回 True
trie.search(“app”); // 返回 False
trie.startsWith(“app”); // 返回 True
trie.insert(“app”);
trie.search(“app”); // 返回 True
提示:
- 1 <= word.length, prefix.length <= 2000
- word 和 prefix 仅由小写英文字母组成
- insert、search 和 startsWith 调用次数 总计 不超过 3 * 104 次
设计原则
Trie* next[26];中的结点并不直接保存字符值的数据成员,而是根据对应索引是否存在进行标识;
如果存在,创建节点,不存在,对应索引的该节点值为nullptr。
通过标志位isEnd标识是否存在以该节点结尾的字符串;
class Trie {
public:
Trie() {
isEnd = false;
memset(next,0,sizeof(next));
}
void insert(string word) {
Trie* node = this;
for(auto ch: word){
if (node->next[ch-'a'] == nullptr){
node->next[ch-'a'] = new Trie();
}
node = node->next[ch-'a'];
}
node->isEnd = true;
}
bool search(string word) {
Trie* node = this;
for(auto ch: word){
node = node->next[ch-'a'];
if(node == nullptr){
return false;
}
}
//app、apple
return node->isEnd;
}
bool startsWith(string prefix) {
Trie* node = this;
for(auto ch: prefix){
node = node->next[ch-'a'];
if(node == nullptr){
return false;
}
}
return true;
}
private:
bool isEnd;
Trie* next[26];
// a - a = 0 ;
// b - a = 1
};
/**
* Your Trie object will be instantiated and called as such:
* Trie* obj = new Trie();
* obj->insert(word);
* bool param_2 = obj->search(word);
* bool param_3 = obj->startsWith(prefix);
*/