Internal Error:Blas GEMM launch failed解决方法

本文介绍了一种解决TensorFlow2.x环境下GPU显存不足的方法。通过限制GPU使用率及设置显存增长策略,有效避免了因显存溢出导致的程序运行失败。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考文章链接
该问题是因为GPU显存不足
在要运行的代码前加上这段,问题便解决了(环境为TensorFlow2.x)

os.environ["CUDA_VISIBLE_DEVICES"] = '0'   #指定第一块GPU可用
config = tf.compat.v1.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.8  # 程序最多只能占用指定gpu50%的显存
config.gpu_options.allow_growth = True      #程序按需申请内存
sess = tf.compat.v1.Session(config = config)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值