手写pytorch线性回归

Python下划线的五种用法

手写线性回归
教程地址
未解决的问题:plt.show()会阻塞

import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random
from tqdm import tqdm
from multiprocessing import Pool


# generate dataset

true_w = torch.Tensor([2, -3.4])
true_w = torch.unsqueeze(true_w, 1)
true_b = torch.Tensor([4.2])

feature_num = 2
data_num = 10000

features = torch.randn(data_num, feature_num, dtype=torch.float32)

true_labels = features.mm(true_w) + true_b
# add Gaussian noise
noise_labels = true_labels + torch.tensor(np.random.normal(0, 0.01, size=true_labels.size()), dtype=torch.float32)

# visualize
def use_svg_display():
    display.set_matplotlib_formats('svg')


def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    plt.rcParams['figure.figsize'] = figsize

#  手写数据迭代器
def data_iter(batch_size, features, labels):
    data_num = len(features)
    indices = list(range(data_num))
    random.shuffle(indices)  # 将indices的列表顺序打乱
    for i in range(0, data_num, batch_size):  # 从0迭代到data_num-1
        # 构建long类型的张量,and防止最后一次不足一个batch
        j = torch.LongTensor(indices[i: min(i + batch_size, data_num)])
        #  yield相当于return,但在哪里跌倒就在哪里站起来,并且节约空间
        # 0代表按行索引,j代表索引哪些行
        yield features.index_select(0, j), labels.index_select(0, j)


# initialize
w = torch.tensor(np.random.normal(0, 0.01, (feature_num, 1)), dtype=torch.float32)
b = torch.zeros(1, dtype=torch.float32)

w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)


# 线性回归计算
def linreg(X, w, b):  # 本函数已保存在d2lzh_pytorch包中方便以后使用
    return torch.mm(X, w) + b


def squared_loss(y_hat, y):  # 本函数已保存在d2lzh_pytorch包中方便以后使用
    # 注意这里返回的是向量, 另外, pytorch里的MSELoss并没有除以 2
    # size不需要用到
    # return (y_hat - y.view(y_hat.size())) ** 2 / 2
    return (y_hat - y.data) ** 2 / 2


def sgd(params, lr, batch_size):  # 本函数已保存在d2lzh_pytorch包中方便以后使用
    for param in params:
        # 注意这里更改param时用的param.data,这样不会被追踪自动微分
        # 因为微分是根据y的值用反向传播算出来的,如果直接改变x的值,会把改变的范围也算进微分里面
        # 或者会导致梯度算出来是None,因为x不再是叶子节点
        param.data -= lr * param.grad / batch_size


# configuration
batch_size = 100
lr = 0.03
num_epochs = 10
#  函数句柄
net = linreg
loss = squared_loss

for epoch in tqdm(range(num_epochs)):  # 训练模型一共需要num_epochs个迭代周期
    # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。X
    # 和y分别是小批量样本的特征和标签
    for X, y in data_iter(batch_size, features, noise_labels):
        l = loss(net(X, w, b), y).sum()  # l是有关小批量X和y的损失
        l.backward()  # 小批量的损失对模型参数求梯度
        sgd([w, b], lr, batch_size)  # 使用小批量随机梯度下降迭代模型参数

        # 不要忘了梯度清零
        w.grad.data.zero_()
        b.grad.data.zero_()
    train_l = loss(net(features, w, b), noise_labels)
    print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))

# 输出运行结果
print(true_w, '\n', w)
print(true_b, '\n', b)


# 画图的放在前面会阻塞后面的进程
set_figsize()
plt.scatter(features[:, 1].numpy(), noise_labels.numpy(), 1, c='r')
plt.scatter(features[:, 1].numpy(), true_labels.numpy(), 1, c='g')
plt.ioff()
plt.show()
plt.ioff()

运行结果
在这里插入图片描述
在这里插入图片描述
调用nn.linear自己构造类

import torch
import torch.utils.data as Data
import torch.nn as nn
import numpy as np

# generate data
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2

features = torch.tensor(np.random.normal(1, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] + features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

batch_size = 10
# 数据和标签组合
dataset = Data.TensorDataset(features, labels)
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)


class LinearNet(nn.Module):
    def __init__(self, n_feature):
        ##  python2写法,class,self
        # super(LinearNet, self).__init__()
        # python3也可以这么写
        super().__init__()
        self.linear = nn.Linear(in_features=n_feature, out_features=1, bias=True)

    def forward(self, x):
        y = self.linear(x)
        return y


net = LinearNet(num_inputs)
print(net)

nn.init.normal_(net.linear.weight, mean=0, std=0.01)
nn.init.constant_(net.linear.bias, val=0)

loss = nn.MSELoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.03)


num_epochs = 3
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        # output是(10,1),所以也要改y
        l = loss(output, y.view(-1, 1))
        optimizer.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d, loss:%f' % (epoch, l.item()))


结果:
在这里插入图片描述
用sequential构造网络

import torch
import torch.utils.data as Data
import torch.nn as nn
import numpy as np

# generate data
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2

features = torch.tensor(np.random.normal(1, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] + features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

batch_size = 10
# 数据和标签组合
dataset = Data.TensorDataset(features, labels)
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)

net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))

print(net)
# 打印出第0层
print(net[0])

# 打印所有可学习参数
for param in net.parameters():
    print(param)

nn.init.normal_(net[0].weight, mean=0, std=0.01)
nn.init.constant_(net[0].bias, val=0)

loss = nn.MSELoss()

# 不同的网络设置不同的学习率
optimizer = torch.optim.SGD([
    {'params': net.linear.parameters()},  # lr=0.01
], lr=0.03)
print(optimizer)

num_epochs = 3
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        # output是(10,1),所以也要改y
        l = loss(output, y.view(-1, 1))
        optimizer.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d, loss:%f' % (epoch, l.item()))

运行结果:
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值