Pytorch中rand,randn, random以及normal的区别
torch.rand()
torch.rand(sizes, out=None)
产生一个服从均匀分布的张量,张量内的数据包含从区间[0,1)的随机数。参数size是一个整数序列,用于定义张量大小。
torch.randn()
torch.randn(sizes, out=None)
产生一个服从标准整正态分布的张量,张量内数据均值为0,方差为1,即为高斯白噪声。sizes作用同上。
torch.normal()
torch.randn(means, std, out=None)
产生一个服从离散正态分布的张量随机数,可以指定均值和标准差。其中,标准差std是一个张量包含每个输出元素相关的正态分布标准差。
torch.randperm()
torch.randperm(n, out=None, requires_grad=True)
返回从0到n-1的整数的随机排列数
torch.randint()
torch.randint(low=0, high, size, out=None, requires_grad=False)
返回一个张量,该张量填充了在[low,high)均匀生成的随机整数。
张量的形状由可变的参数大小定义。