Pytorch中rand,randn, random以及normal的区别

本文详细介绍了PyTorch中各种随机数生成函数的使用方法及区别,包括torch.rand(), torch.randn(), torch.normal(), torch.randperm()和torch.randint()等,帮助读者深入理解并正确应用这些函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch中rand,randn, random以及normal的区别

torch.rand()

torch.rand(sizes, out=None)
产生一个服从均匀分布的张量,张量内的数据包含从区间[0,1)的随机数。参数size是一个整数序列,用于定义张量大小。

torch.randn()

torch.randn(sizes, out=None)
产生一个服从标准整正态分布的张量,张量内数据均值为0,方差为1,即为高斯白噪声。sizes作用同上。

torch.normal()

torch.randn(means, std, out=None)
产生一个服从离散正态分布的张量随机数,可以指定均值和标准差。其中,标准差std是一个张量包含每个输出元素相关的正态分布标准差。

torch.randperm()

torch.randperm(n, out=None, requires_grad=True)
返回从0到n-1的整数的随机排列数

torch.randint()

torch.randint(low=0, high, size, out=None, requires_grad=False)
返回一个张量,该张量填充了在[low,high)均匀生成的随机整数。
张量的形状由可变的参数大小定义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值