二分法解决 “最大化平均值问题”

该博客介绍了如何运用二分法解决一个绳子切割问题,目标是将N条不同长度的绳子切割成K条长度相等的部分,要求找出这种切割方式下,每小段绳子的最长可能长度。通过设定初始区间,采用二分法不断调整搜索范围,直到找到满足条件的解。博客提供了一个示例输入和输出,并附带了Python实现的代码细节,强调了循环控制条件的设置来确保精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

有N条绳子,它们的长度分别为Li。如果从它们中切割出K条长度相同的绳子,这K条绳子每条最长能有多长?答案保留到小数点后2位(去尾法)。
示例
输入:([8.02,7.43,4.57,5.39],11)
输出:2.00
解释
列表[8.02,7.43,4.57,5.39]表示每段绳子的长度,11表示切割成长度相等的11段,求出每小段绳子的最长距离是2.00

编程思路

       首先确定初始区间[left,right] ,显然left=0,right可取单段绳子的最大值。
       然后使用二分法公式mid=(left+right)/2得到mid,把mid假定是切割后的每段长度。如果按照mid值可以切出k段绳子,说明mid可能过小,则增大下界,使left=mid;如果按照mid值切不出k段绳子,则mid取大了,减小上界,使right=mid。
       循环,最终使left 与right无限逼近答案。
注意:程序中可以使用 while ((right-left)>=1e-4)作为循环控制条件。
python代码如下

def panduan(</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值