图论第二章.图 知识总结
1.图的基本概念
1.1图的定义及相关概念
无向图:
一个无向图G是一个有序二元组<V,E>,记作G=<V,E>其中集合V中的元素被称为结点,E是无序积,称E为G的边集,E中的元素称为无向边或简称为边。如图1所示
有向图:
与无向图不同,有向图G中的E是笛卡尔积V×V的多重子集,称其元素为有向边或弧。如图2所示:
像图1一样给图的结点和边都标记名称的图称为标定图,当e=(u,v)时,称u和v是e的 端点,并称e与u、v是 关联的,而结点u与v是 邻接的。若两条边关联与同一个结点,则称两边是 相邻的。 若一条边关联的两个结点重合,则称此边为环或自回路。
如果结点集V和边集E都是有限集,则称图为 有限图。在图G=<V,E>中,若|V|=n,|E|=M,则称G是 n阶图;若|V|=n,|E|=0,则称G为 n阶零图;若|V|=1,|E|=0,则称G是 平凡图。
1.2结点的度
定义:
设G=<V,E>为一无向图,v∈V,与v相关联边的次数称为v的度,记作deg(v),简称d(v)。
设G=<V,E>为一有向图,v∈V,v作为边的始点的次数称为v的出度,记作deg+(v);v作为边的终点的次数称为v的入度,记作deg-(v)。v作为边的端点的次数记为v的度数,记作deg(v),很显然,deg(v)=deg+(v)+deg-(v)。
称度为1的结点为悬挂点,与悬挂点关联的边称为悬挂边。
关于结点的度还有以下定义:
握手定理及其推论☆☆(非常重要):
1.3完全图、补图、正则图和子图
完全图:
设G=<V,E>为简单无向图,若任意两个结点之间都有边相连,则称G为完全图,具有n个结点的完全图记作Kn。
设G=<V,E>为简单有向图,若每对结点间均有一对方向相反的边相连,则称G为有向完全图,具有n个结点的完全图记作Dn。
无向完全图的边数为
C
n
2
C^2_n
Cn2=
n
(
n
−
1
)
2
\frac{n(n-1)}{2}
2n(n−1)。有向完全图
D
n
D_n
Dn的边数显然是无向完全图
K
n
K_n
Kn的二倍
n
(
n
−
1
)
n(n-1)
n(n−1)。
正则图:
定义:在一个简单无向图中,如果每个结点的度数均为
k
k
k,则该图称为
k
k
k-正则图。
补图:
定义:给定一个图G,以G中所有结点为结点集,以所有能使G成为完全图所添加边为边集组成的图,称为G相对于完全图的补图,记作
G
‾
\overline{\text{G}}
G。
子图:
若结点相同,边为子集称生成子图。
导出子图分两种:1.以两个端点均在结点集V中的边组成边集,称V导出的子图 2.以与边集E相关联结点组成结点集的图称为E导出的子图。
1.4图的同构☆
定义:
定义2.1.8说明,两个图的结点之间,如果存在双射函数,而且这种双射函数保持了结点之间的邻接关系且边的重数不变,则这两个图是同构的。
同构的必要条件有三:1.顶点数相同 2.边数相同 3.度数序列相同
2.图的连通性☆
2.1 通路
定义:
简单无向图中最小长度为3
若通路的边
e
1
,
e
2
,
.
.
.
e
n
e_1,e_2,...e_n
e1,e2,...en互不相同,则成为简单通路(边不同);如果它满足
v
0
=
v
n
v_0 = v_n
v0=vn则称为简单回路。
如果一条通路中结点
v
0
,
v
1
,
v
2
,
.
.
.
v
n
v_0,v_1,v_2,...v_n
v0,v1,v2,...vn互不相同,则称为路径(顶点不同)。
如果一条回路的起点和内部结点互不相同,则称为圈。一般长度为
k
k
k的圈称为
k
k
k圈,长度为奇数的圈称为奇圈,长度为偶数的圈称为偶圈。
关键定理:
2.2图的连通性
定义:
在一个无向图G中,若存在从结点
v
i
v_i
vi到
v
j
v_j
vj的通路,则称
v
i
v_i
vi与
v
j
v_j
vj是连通的。
连通图:
若无向图G中任意两个结点都是连通的,则称图G是连通图。
若G为连通图,则
ω
(
G
)
=
1
ω(G)=1
ω(G)=1,若G为非连通图,则
ω
(
G
)
≥
2
ω(G)≥2
ω(G)≥2。
重要定义:
设D是一有向图,若去掉D中各边方向后所得无向图是连通的,则称D是弱连通图;如果D中任意两结点
v
i
v_i
vi和
v
j
v_j
vj之间,有
v
i
v_i
vi到
v
j
v_j
vj可达或者
v
j
v_j
vj到
v
i
v_i
vi可达,则称图D是单向连通图;若D中任意两结点都互相可达,则称D是强连通图。
强连通图的充分必要条件:一个回路中至少包括G中每个分结点
图中,a为强连通图,b为单向连通图,c为弱连通图
2.3无向图的连通度☆☆☆☆☆
点割集与边割集:
简而言之, 割点是无向连通图中的一个特殊的点, 删去中这个点后, 此图不再连通, 而所以满足这个条件的点所构成的集合即为割点集合,还有一个要求,点割集中不能出现割点。
边割集的概念参考点割集。
连通度:
点连通度就是使连通图G成为一个不连通图需要删除的点的最小数目,记为K,则图也可称作K-连通图,边连通度同理
重要定理证明☆☆☆☆:
即证明点割集≤边割集≤最小度
通过G - {v}来证明充分性和必要性
扩大路径法☆☆☆☆:
二部图:
准确地说:把一个图的顶点划分为两个不相交子集 ,使得每一条边都分别连接两个集合中的顶点。如果存在这样的划分,则此图为一个二分图。
二部图判定定理:一个无向图G=<V,E>是二部图当且仅当G中无奇数长度的回路。
3.图的矩阵表示☆☆
3.1无向图的关联矩阵
3.2无环有向图的关联矩阵(点与边的关系)
3.3有向图的邻接矩阵(点与点的关系)☆☆☆
3.4无向简单图的邻接矩阵
3.5有向图的可达矩阵
4.欧拉图与哈密顿图
4.1欧拉图
定义☆(记结论):
定理及推论:
G是欧拉图的充分必要条件是G是连通图且没有奇度结点
G是半欧拉图的充分必要条件是欧拉路的起点和终点是G种仅有的两个奇度结点
有向欧拉图:
4.2哈密顿图☆☆☆☆
定义:
必要条件☆☆☆☆(会证明):
有割点或者有桥的图不一定是欧拉图,但肯定都不是哈密顿图。
二部图是否是哈密顿图:
充分条件(记结论):