(上)Tennessee Eastman process(TE过程) 数据集介绍及预处理

一、数据集介绍

数据集下载:https://github.com/camaramm/tennessee-eastman-profBraatz

介绍:http://depts.washington.edu/control/LARRY/TE/download.html

二、论文中的方法提炼

《Industrial Data-Driven Monitoring Based on Incremental Learning Applied to the Detection of  Novel Faults》202009一区LDA

1.解决的问题
2.使用的方法

《Fault diagnosis of TE process based on incremental learning》202007—b会—知识蒸馏

关于TE过程的github数据集处理方法链接

直接在github上搜索关键词:Tennessee Eastman process

XGBoost/XGBoost.ipynb at master · prudhvinathreddymalla/XGBoost · GitHub

https://github.com/hsaafan/TEPImport

https://github.com/search?l=Python&q=Tennessee+Eastman+process&type=Repositories

Tennessee-Eastman-Process/Time Series-checkpoint.ipynb at master · AugustoCam95/Tennessee-Eastman-Process · GitHub

1.尝试将代码复制在pycharm中跑出来。

2.问题1:报错。Matplotlib中%matplotlib inline_庆志的小徒弟-CSDN博客_%matplotlib inline

 

三、增量学习一般的训练测试大致过程:这里只讨论类增量

手写数字数据集举例。0-9的手写数字图片。

将0-9以每两个类别为一批,共有5批(0,1)(2,3)(4,5)(6,7)(8,9)

1.一开始只训练第一批(0,1)的训练集,然后再丢入数字0和1的测试集,记录下此时对数字0和1的识别精度a1,b1;并且设置一个memory存储区,选择部分(0,1)手写数字图片的部分训练集样本,防止遗忘。注意这里是“一边训练,一边存储”

2.在训练过(0,1)的基础上,往模型中继续丢入(2,3)的训练集。训练完后,再将(0,1),(2,3)的测试集丢进网络进行识别,并记录下0-3的识别精度。分别为:a2,b2,c1,d1.

3.继续添加剩余数字的训练集重复该项操作。

正常训练情况下,最先训练的样本是会被遗忘的。因此需要设置一个存储区,对先前的训练样本进行部分(最原始的random)保留。这样的操作通常称为重播算法。我们会发现即便有个存储区还是会出现a2<a1,b2<b1,还是会产生遗忘。但是相比正常训练下的平均精度还是有所提升的。

平均精度:以训练到(2,3)为例,即L1=(a1+b1+a2+b2+c1+d1)/6

什么是正常训练情况呢:

1.一开始只训练第一批(0,1)的训练集,然后再丢入数字0和1的测试集,记录下此时对数字0和1的识别精度A1,B1;此时不设置memory存储区

2.在训练过(0,1)的基础上,直接往模型中继续丢入(2,3)的训练集。训练完后,再将(0,1),(2,3)的测试集丢进网络进行识别,并记录下0-3的识别精度。分别为:A2,B2,C1,D1.

平均精度:以训练到(2,3)为例,即L2=(A1+B1+A2+B2+C1+D1)/6

我们会发现L1>L2,即我们的算法识别精度较高,则说明我们的算法拥有一定的对抗遗忘的能力。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值