C. Do you want a date?
Leha decided to move to a quiet town Vičkopolis, because he was tired by living in Bankopolis. Upon arrival he immediately began to expand his network of hacked computers. During the week Leha managed to get access to n computers throughout the town. Incidentally all the computers, which were hacked by Leha, lie on the same straight line, due to the reason that there is the only one straight street in Vičkopolis.
Let’s denote the coordinate system on this street. Besides let’s number all the hacked computers with integers from 1 to n. So the i-th hacked computer is located at the point xi. Moreover the coordinates of all computers are distinct.
Leha is determined to have a little rest after a hard week. Therefore he is going to invite his friend Noora to a restaurant. However the girl agrees to go on a date with the only one condition: Leha have to solve a simple task.
Leha should calculate a sum of F(a) for all a, where a is a non-empty subset of the set, that consists of all hacked computers. Formally, let’s denote A the set of all integers from 1 to n. Noora asks the hacker to find value of the expression . Here F(a) is calculated as the maximum among the distances between all pairs of computers from the set a. Formally, . Since the required sum can be quite large Noora asks to find it modulo 109 + 7.
Though, Leha is too tired. Consequently he is not able to solve this task. Help the hacker to attend a date.
Input
The first line contains one integer n (1 ≤ n ≤ 3·105) denoting the number of hacked computers.
The second line contains n integers x1, x2, …, xn (1 ≤ xi ≤ 109) denoting the coordinates of hacked computers. It is guaranteed that all xi are distinct.
Output
Print a single integer — the required sum modulo 109 + 7.
Examples
Input
2
4 7
Output
3
Input
3
4 3 1
Output
9
Note
There are three non-empty subsets in the first sample test:, and . The first and the second subset increase the sum by 0 and the third subset increases the sum by 7 - 4 = 3. In total the answer is 0 + 0 + 3 = 3.
There are seven non-empty subsets in the second sample test. Among them only the following subsets increase the answer: , , , . In total the sum is (4 - 3) + (4 - 1) + (3 - 1) + (4 - 1) = 9.
思路
这道题需要找规律,多次枚举发现,先进行排序,然后其加的次数和减的次数有关系。举几个简单的例子如下图。
输入2个数据时 | 4 | 7 |
---|---|---|
从大到小排 | 7 | 4 |
加的次数 | 1 | 0 |
减的次数 | 0 | 1 |
输入3个数据时 | 3 | 4 | 1 |
---|---|---|---|
从大到小排 | 4 | 3 | 1 |
加的次数 | 3 | 1 | 0 |
减的次数 | 0 | 1 | 3 |
输入4个数据时 | 3 | 4 | 1 | 2 |
---|---|---|---|---|
从大到小排 | 4 | 3 | 2 | 1 |
加的次数 | 7 | 3 | 1 | 1 |
减的次数 | 0 | 1 | 3 | 7 |
多次列举发现,a[i](从0开始录入)加的次数和减的次数的0,1,3,7分别是2 ^ n - 1,但是直接pow好像会出现一些奇奇怪怪的bug,因此我选择直接声明一个计数器,在循环计算过程中让计数器不断×2,在每次循环过程中都需要mod 1e9+7,包括计数器也要mod 1e9+7。数据很大,被坑了一手,代码全程开long long,需要在main函数外开数组空间才足够。
代码
#include<stdio.h>
#include<math.h>
#include<algorithm>
long long a[300000+5];
using namespace std;
int main(){
int n;
while(scanf("%d",&n) != EOF){
for(int i=0;i<n;i++){
scanf("%lld",&a[i]);
}
sort(a,a+n);
long long total = 0;
long long count = 1;
for(int i=0;i<n;i++){
total += ( ( a[i] * (count - 1) ) % 1000000007 );
total -= ( ( a[n-i-1] * (count - 1) ) % 1000000007 );
total = total % 1000000007;
count = (count * 2) % 1000000007;
}
total = (total + 1000000007) % 1000000007;
printf("%lld\n",total);
}
return 0;
}