在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
现有矩阵 matrix 如下:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ] 给定 target = 5,返回 true。
给定 target = 20,返回 false。
限制:
0 <= n <= 1000
0 <= m <= 1000
题解:
由于该数组的行和列都为递增。可以将数组看成坐标轴上的点,原点为左下角的数,i为行,j为列。把左下角的点作为标记flag。如果target 比flag小,说明flag所在行都比target小,flag上移一行,i--。如果target比flag大,说明flag所在列都比target小,flag左移一列,j++。直至找到target返回true 或者 flag到达右上角返回false。
public static boolean findNumberIn2DArray(int[][] matrix,int target){
int i = matrix.length-1;
int j = 0;
while(i>=0&&j<matrix[0].length){
if(target==matrix[i][j]){
return true;
}
else if (target<matrix[i][j]){
i--;
}
else if(target>matrix[i][j]){
j++;
}
}
return false;
}