分析背景和目的
该数据源自美团面试分析题,整个数据只有542条观测,比较适合做可视化分析,故用Tableau和SPSS做了一份分析报告,目的是分析这份数据中美团外卖骑手差评原因,并给出改善方案
数据集介绍
数据集有11个字段,542条观测,每条观测即是一条差评订单的情况(顾客配送评分都是1)。以下是前五条观测
顾客配送评价标签主要有:送达超时、态度不好、洒餐、少餐、提前送达、送达不通知、仪表不整、送错餐品、骚扰威胁、其他共10个标签,每个差评订单可选多个标签,用 " | " 分隔。
骑手姓名重复默认为同一个骑手;同一个骑手可能在不同站点出现差评
数据清洗
- 首先数据无重复值和缺失值,顾客评价内容和订单备注的缺失是正常情况
- 拆分每条订单的顾客配送评价标签,把数据集导入SPSS,通过数据-重构把评价标签从长型转换为宽型
- 把SPSS重构后的数据集导入Tableau,并添加计算字段:
取餐时长=[骑手接单时长]+[到店时长]+[到店等餐时长];
总时长=[骑手接单时长]+[到店时长]+[到店等餐时长]+[送达时长]
数据分析
1.站点分析
骑手数是差评骑手数,订单数是差评订单数