jetson Xavier 安装pycuda 报错 Failed building wheel for pycuda

报错信息
note: This error originates from a subprocess, and is likely not a problem with pip.
ERROR: Failed building wheel for pycuda
Failed to build pycuda
ERROR: Could not build wheels for pycuda, which is required to install pyproject.toml-based projects

最简单的方法

新建一个虚拟环境,按nvidia官方给的方法装

conda create -n py310 python=3.10
conda activate py310
git clone https://github.com/NVIDIA/TensorRT.git
cd TensorRT/
python3 -m pip install -r requirements.txt

pytorch、torchvision、pycuda、onnx、onnxruntime等等都会一条命令装好,非常方便。

如果以上不满足你的开发需求,尝试以下方法

解决方法一
1、确定自己的cuda以及python版本
点此查看对应pycuda版本
注:cuda114代表cuda=11.4 ,cp38代表python=3.8,对应pycuda版本为2021.1
在这里插入图片描述
2、修改~/.bashrc

sudo su
vim ~/.bashrc
export PATH=/usr/local/cuda-11.4/bin:/usr/local/cuda/bin:$PATH

上面的cuda-11.4记得改成自己的cuda版本

source ~/.bashrc
nvcc -V 

看一下有没有成功输出cuda版本信息
在这里插入图片描述

2、安装

sudo apt-get install python3-pip
pip3 install Cython
sudo apt-get update
sudo apt-get install -y build-essential libatlas-base-dev
sudo apt-get install libatlas-base-dev gfortran
pip3 install pycuda==2021.1

2021.1记得改成跟自己环境匹配的版本

解决方法二
如果以上pip安装方法不行:
最后一步的
pip3 install pycuda==2021.1
改为:
1、下载源码
2、解压安装

tar -zxvf pycuda-2021.1.tar.gz
cd pycuda-2021.1 
export PATH=/usr/local/cuda/bin:$PATH
python3 setup.py build
sudo python3 setup.py install
### 安装 PyTorch 时构建 wheel 失败的解决方案 当遇到 `ERROR: Failed building wheel for pytorch` 的错误提示时,通常是因为依赖项缺失或者环境配置不正确引起的。以下是可能的原因分析以及对应的解决办法: #### 可能原因及解决方法 1. **缺少必要的编译工具链** 如果操作系统中未安装 C++ 编译器或其他开发工具,则可能导致无法成功构建 wheel 文件。对于 Windows 用户,可以尝试安装 Microsoft Visual Studio 并确保选择了 C++ 开发组件;而对于 Linux 和 macOS 用户,可以通过包管理器安装 GCC 或 Clang 工具链[^1]。 2. **网络问题或镜像源不可用** 若因网络连接不稳定而导致某些依赖库下载失败,可切换至国内稳定镜像源来加速安装过程。例如,清华大学开源软件镜像是一个常用的选择: ```bash pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple/ ``` 3. **特定版本兼容性问题** 不同版本的 Python、CUDA 驱动程序与 PyTorch 存在严格的匹配关系。建议访问官方文档页面 (https://pytorch.org/get-started/locally/) 获取适合当前系统的预设命令行脚本执行安装操作[^2]。 4. **手动指定本地路径完成安装** 对于部分复杂项目而言,直接通过 Pip 自动处理其扩展模块可能会遭遇困难。此时不妨考虑先克隆目标仓库到本地后再依据指示逐步完成定制化部署流程。比如针对 COCO 数据集使用的工具包就有如下实例可供参考: ```bash git clone https://github.com/cocodataset/cocoapi.git cd cocoapi/PythonAPI python setup.py build_ext --inplace ``` 5. **其他潜在因素排查** 当上述措施均未能奏效时,还需进一步核查是否存在权限不足或是虚拟环境隔离不当等情况干扰正常进程推进。必要情况下重新创建一个新的干净工作区再试一次也许会有意想不到的效果[^3]。 ```python import torch print(torch.__version__) if torch.cuda.is_available(): print('CUDA is available') else: print('No CUDA detected') ``` 以上即为关于如何应对 “Failed Building Wheel For Pytorch” 错误的一些常见策略总结。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值