吴恩达机器学习编程作业1:Python实现线性回归

1.单变量线性回归

导入需要使用的包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

导入数据集。提醒大家:一定要把数据文件ex1data1.txt放在和程序同一个文件夹里,否则需要使用绝对路径访问文件

path =  'ex1data1.txt'
data = pd.read_csv(path, header=None, names=['Population', 'Profit'])#names列名
data.head()

在开始任何任务之前,通过可视化来理解数据通常是有用的。
对于这个数据集,您可以使用散点图来可视化数据,因为它只有两个属性(利润和人口)。

data.plot(kind='scatter', x='Population', y='Profit', figsize=(12,8))
plt.show()

散点图
现在让我们使用梯度下降来实现线性回归,以最小化成本函数。 以下代码示例中实现的方程在“练习”文件夹中的“ex1.pdf”中有详细说明。

首先,我们将创建一个以参数θ为特征函数的代价函数
在这里插入图片描述在这里插入图片描述
计算代价函数J(θ)

def computeCost(X, y, theta):
    # your code here  (appro ~ 2 lines)
    predictions = X*theta.T
    sqrErrors = np.square(predictions-y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值