题目描述
棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,A点(0, 0)、B点(n,m)(n, m为不超过2020的整数),同样马的位置坐标是需要给出的。
现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入格式
一行四个数据,分别表示B点坐标和马的坐标。
输出格式
一个数据,表示所有的路径条数。
输入输出样例
输入
6 6 3 3
输出
6
代码实现
bx, by, hx, hy = map(int, input().split())
a = []
b = []
for i in range(by + 1):
a.append([0] * (bx + 1))
b.append([0] * (bx + 1))
b[0][0] = 1
for i in range(by + 1):
for j in range(bx + 1):
disY = abs(i - hy)
disX = abs(j - hx)
if disX == 1 and disY == 2:
a[i][j] = -1
elif disY == 0 and disX == 0:
a[i][j] = -1
elif disX == 2 and disY == 1:
a[i][j] = -1
for i in range(1, by + 1):
if a[i - 1][0] != -1 and a[i][0] != -1:
b[i][0] = b[i - 1][0]
for j in range(1, bx + 1):
if a[0][j] != -1 and a[0][j - 1] != -1:
b[0][j] = b[0][j - 1]
for i in range(1, by + 1):
for j in range(1, bx + 1):
if a[i][j] != -1:
b[i][j] = b[i - 1][j] + b[i][j-1]
print(b[by][bx])