题目描述
棋盘上 A 点有一个过河卒,需要走到目标 B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,A点 (0, 0),B点 (n, m),同样马的位置坐标是需要给出的。
输入格式
现在要求你计算出卒从 A 点能够到达 B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
一行四个正整数,分别表示 B 点坐标和马的坐标。
输出格式
一个整数,表示所有的路径条数。
输入输出样例
输入
6 6 3 3
输出
6
说明/提示
对于 100% 的数据,1 ≤ n,m ≤ 20,0 ≤ 马的坐标 ≤20。
【题目来源】
NOIP 2002 普及组第四题
思路分析
刚开始想着直接遍历暴力解题,用栈存下来每次得选择,然后直到碰到目标或碰到马和马可以跳到的地方,再回溯回去,直到栈空为止,但是这样有一个问题就是,考虑边界时,马坐标为(20,20),目标为(19,19),即从(0,0)到(19,19),指数增加,预计为2^19,而一秒可运行10^7——10^8,显然时间上就不允许。后来考虑动态规划,即求最优解的办法,将复杂问题分解成小问题,将每个子问题的解法记录,之后合成大问题的解法,具体到这道题就是,我们只能往右和下走,那么我们就可以开一个二维数组用来存储该点到目标点的路线,然后每一个点的路线方法由公式dp[i][j] = dp[i][j + 1] + dp[i + 1][j]可得,需要注意的是,即目标加一的边界直接按0处理,因为按照游戏规定,永远走不到终点。
#include<stdio.h>
#include<string.h>
long long dp[30][30];
int main() {
memset(dp, -1, sizeof(dp));
int n1, m1, n2, m2;
scanf("%d %d %d %d", &n1, &m1, &n2, &m2);
for (int i = 0; i < n1 + 1; i++) {
dp[i][m1 + 1] = 0;
}
for (int i = 0; i < m1 + 1; i++) {
dp[n1 + 1][i] = 0;
}
dp[n1][m1] = 1;
for (int i = n1; i >= 0; i--) {
for (int j = m1; j >= 0; j--) {
if ((i - n2) * (i - n2) + (j - m2) * (j - m2) == 5 || i == n2 && j == m2) {
dp[i][j] = 0;
}
if(dp[i][j] == -1) {
dp[i][j] = dp[i][j + 1] + dp[i + 1][j];
}
}
}
printf("%lld\n", dp[0][0]);
return 0;
}