题目描述
学霸抢走了大家的作业,班长为了帮同学们找回作业,决定去找学霸决斗。但学霸为了不要别人打扰,住在一个城堡里,城堡外面是一个二维的格子迷宫,要进城堡必须得先通过迷宫。因为班长还有妹子要陪,磨刀不误砍柴功,他为了节约时间,从线人那里搞到了迷宫的地图,准备提前计算最短的路线。可是他现在正向妹子解释这件事情,于是就委托你帮他找一条最短的路线。
输入
第一行两个整数n, m,为迷宫的长宽。
接下来n行,每行m个数,数之间没有间隔,为0或1中的一个。0表示这个格子可以通过,1表示不可以。假设你现在已经在迷宫坐标(1,1)的地方,即左上角,迷宫的出口在(n,m)。每次移动时只能向上下左右4个方向移动到另外一个可以通过的格子里,每次移动算一步。数据保证(1,1),(n,m)可以通过。
输出
第一行一个数为需要的最少步数K。
第二行K个字符,每个字符∈{U,D,L,R},分别表示上下左右。如果有多条长度相同的最短路径,选择在此表示方法下字典序最小的一个。
样例输入
3 3
001
100
110
样例输出
4
RDRD
题目分析
以上面例子为例,先做成地图数组
每一个步骤都有下左右上四个选择,做成四个函数若符合条件则调用并返回一个新的节点存入队列之中,并把访问过的点存进set减去不必要的枝节。直到找到终点则退出
代码实现
class Node:
def __init__(self, x, y, w):
self.x = x //记录横坐标
self.y = y //记录纵坐标
self.w = w //记录路径
def __str__(self):
return self.w //输出路径
def up(node):
return Node(node.x, node.y - 1, node.w+"U") //上的情况
def down(node):
return Node(node.x, node.y + 1, node.w+"D") //下的情况
def left(node):
return Node(node.x - 1, node.y, node.w+"L") //左的情况
def right(node):
return Node(node.x + 1, node.y, node.w+"R") //右的情况
if __name__ == '__main__':
n, m = map(int, input().split())
visited = set() //记录访问过的点
queue = []
map_int = [[0] * (m + 1)]
for i in range(1, n+1):
map_int.append([0]*(m+1))
nums = input()
nums = "0" + nums
for j in range(0, m+1):
map_int[i][j] = ord(nums[j]) - 48 //ord转化为ascII码
node = Node(1, 1, "") //设置起点
queue.append(node)
while len(queue) != 0:
moveNode = queue[0] //设置当前移动点为moveNode
queue.pop(0)
moveStr = str(moveNode.x) + " "+ str(moveNode.y) //用于记录当前坐标是否走过
if moveStr not in visited:
visited.add(moveStr)
if moveNode.x == m and moveNode.y == n: //若到达终点则输出且退出循环
print(len(moveNode.__str__())) //步数
print(moveNode) //打印路径
break
if moveNode.y < n: //首先顺序为下
if map_int[moveNode.y + 1][moveNode.x] == 0:
queue.append(down(moveNode))
if moveNode.x > 1: //第二顺序是左
if map_int[moveNode.y][moveNode.x - 1] == 0:
queue.append(left(moveNode))
if moveNode.x < m: //第三顺序是右
if map_int[moveNode.y][moveNode.x + 1] == 0:
queue.append(right(moveNode))
if moveNode.y > 1: //最后顺序是上
if map_int[moveNode.y - 1][moveNode.x] == 0:
queue.append(up(moveNode))