摘要
目标检测是计算机视觉中的重要任务,广泛应用于安防监控、自动驾驶、智能家居等领域。YOLO系列模型由于其高效的检测速度和较高的准确率,成为目标检测任务的首选算法之一。本项目结合 YOLOv8 与 PyQt5 或者 PySide6,我推荐使用 PySide6,构建了一个图形化界面,便于用户进行目标检测的操作和展示,实现对图片、视频和摄像头的实时目标检测,不仅可以用于大论文的工作量展示,还可以作为毕业设计。支持目标检测、目标分割等模型进来检测。目前还更新了后台管理系统。
✔️第五版代码,在第四版代码上新增管理员后台系统,后台管理系统功能有:管理员登录模块,用户管理模块,管理员个人中心模块等。
✔️第四版代码,优化内容:美化界面、AI 问答界面、退出登录、界面保存登录状态、个人信息修改、密码修改、头像修改、注册界面新增上传头像等功能,前端界面代码和后端代码使用 PySide6 框架,界面如下:
✔️第三版代码,在第二版代码上,新增登录和注册功能,使用的是MySQL数据库,界面如下:
✔️第二版代码,优化界面版如下:
第一版代码,界面展示如下: