opencv深度学习人工智能技术打假抖音“伪娘“之性别实时检测

本文介绍如何使用人工智能技术,特别是opencv和深度学习模型,实现实时检测摄像头中的人脸性别,以揭穿抖音上的“伪娘”现象。通过人脸检测、性别检测模型以及图像预处理,将结果实时显示在图像上,实现性别检测功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

抖音的美颜功能强大到能把男人变成伪娘,甚至还有年轻小伙刷礼物,疯狂追求,殊不知,你追求的大美女在生活中却是一个油腻大叔。本期文章带你如何使用人工智能技术打假抖音伪娘

人脸年龄的检测步骤

0、打开摄像头,获取图片数据

1、对图片进行人脸的检测,需要人脸检测模型

2、把检测到的人脸数据给性别检测模型去检测,需要性别检测模型

3、把检测结果实时呈现到图片上

import numpy as np
import timeimport cv2import osdef predict_gender(frame, faceNet, ageNet):	genderList = ['Male', 'Female']
	results = []
	(h, w) = frame.shape[:2]
	blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300),	(104.0, 177.0, 123.0))	faceNet.setInput(blob)	detections = faceNet.forward()	for i in range(0, detections.shape[2]):
		confidence = detections[0, 0, i, 2]
		if confidence > 0.5:			box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
			(startX,
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能研究所

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值