s波偏振,p波偏振,TE波和TM波
设电磁波沿Z轴方向传播,这时候z方向可写为exp(ikz),假如是二维情况,比如在x方向介电常数和磁导率不变,即E和H的各个分量对x的偏导为0,将这些条件代入Maxwell方程的旋度方程,可以得到两组独立的解,分别对应于TE和TM,这时候指的TE和TM只有三个分量。
TE波,TM波这些概念的确用得很混淆,一般书上也没有详细区分。
光学中的s波偏振,p波偏振,对应于TE波和TM波,但与波导中的TE波和TM波是不同的。
光学中的TE,TM波的电磁场分量都只有三个(一般电磁场分量有6个),TE(Ez,Hx,Hy,Ez是独立的,其他两个可以由Ez导出),TM(Hz,Ex,Ey,Hz是独立的,其他两个可以由Hz导出)。为什么是这样?因为介质在Z方向是不变化的话,麦克斯韦方程可以拆解成两组独立的方程,一组描述TE波,一组描述TM波。
波导中的TE波和TM波都有五个分量,TE(Hz,Hx,Hy,Ex,Ey,只有Hz是独立的),TM(Ez,Ex,Ey,Hx,Hy,只有Ez是独立的)。这方面可以参考讲波导的书。TEM波,就是既有Hz,又有Ez的波。
1、激光器出来的光不一定是偏振光,但由于偏振光比较常用,所以大多数激光器设计出光为线偏振光或圆偏振光。偏振激光的产生与激光腔内布儒斯特窗(宏观:选择偏振)或晶体的各项异性(微观:选择受激辐射)有关。
2、偏振这个概念是针对电场(人所能感受到的电磁场强度)这个物理量的,不要用到磁场上,不然就把自己弄糊涂了。电场振动方向垂直入射面的叫TE波,电场振动方向在入射面内的叫TM波。
3、电磁波在自由空间中传播时,无TE或TM的说法,所以统称为TEM波,就是电磁波的意思,和偏振无关;而在波导中,电磁波一维受限,此时会在受限方向上产生模式分布,即MAXWELL方程组可以分解为两个独立的方程组,分别为TE和TM波,和偏振有关。不同的领域对TE和TM波的叫法不同,S波对应TE波,P波对应TM波,本质都是一样的。
4、用一个偏振片即可区分TE和TM和自然光,沿偏振片表面法线旋转观察其透射光有无亮暗变化即可。若是圆偏振光,则需偏振片和对应的波片搞定
电磁场在自由空间传播,只要某个方向是均匀的(例如Z方向),就会存在一种电磁波,其六个场分量对Z方向的导数为零,这时Maxwell方程也可以拆成两组独立方程(和波导类似),这就是光学中的S波和P波,文献中也经常叫TE波和TM波。
电磁波在自由空间中传播,E,H 都与传播的方向垂直,其纵向分量为零,这样的横波成为横电磁波,简称TEM波,其解满足赫姆霍兹方程。
波导中的电磁波是满足一定边界条件的赫姆霍兹方程的解。那么根据波导管中的电磁场边界条件解出来的赫姆霍兹方程的解的形式有:
1,由于波导中的 E 和 H 不能同时为零。因此波导中不存在TEM波,或者说电场和磁场不能同时为横波;
2,在波导中常选Ez = 0的一种的模,称为TE模(横电模);
3,另一种是Hz = 0的模,称为TM模(横磁模);
TEM TE TM模的区别
在自由空间传播的均匀平面电磁波(空间中没有自由电荷,没有传导电流),电场和磁场都没有和波传播方向平行的分量,都和传播方向垂直。此时,电矢量E,磁矢量H和传播方向k两两垂直。只是在这种情况下,才可以说电磁波是横波。沿一定途径(比如说波导)传播的电磁波为导行电磁波。根据麦克斯韦方程,导行电磁波在传播方向上一般是有E和H分量的。光的传播形态分类:根据传播方向上有无电场分量或磁场分量,可分为如下三类,任何光都可以这三种波的合成形式表示出来。
1、TEM波:在传播方向上没有电场和磁场分量,称为横电磁波。若激光在谐振腔中的传播方向为z方向,那么激光的电场和磁场将没有z方向的分量!实际的激光模式是准TEM模,即允许Ez、Hz分量的存在,但它们必须<<横向分量,因为较大的Ez意味着波矢方向偏离光轴较大,容易溢出腔外,所以损耗大,难于形成振荡。
2、TE波(即是物光里的s波):在传播方向上有磁场分量但无电场分量,称为横电波。在平面光波导(封闭腔结构)中,电磁场分量有Ey, Hx, Hz,传播方向为z方向。
3、TM波(即是物光里的p波):在传播方向上有电场分量而无磁场分量,称为横磁波。在平面光波导(封闭腔结构)中,电磁场分量有Hy, Ex, Ez,传播方向为z方向。 微波工程、电磁场理论等课程中有关于TEM、TE、TM模的更为详细的描述。
E,H,k一定满足右手螺旋,但它们未必是两两正交的。
TE:横电模,电场纵向分量为0时。
TH:横磁模,磁场纵向分量为0时。