带你构建最基础的卷积神经网络(CNN)

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras



'''查看版本号'''

print(tf.__version__)
print(sys.version_info)
for module in mpl,np,pd,sklearn,tf,keras:
    print(module.__name__,module.__version__)

'''load the data'''

fashion_mnist = keras.datasets.fashion_mnist
(x_train_all,y_train_all),(x_test,y_test)=fashion_mnist.load_data()
x_valid,x_train=x_train_all[:5000],x_train_all[5000:]
y_valid,y_train=y_train_all[:5000],y_train_all[5000:]

print(x_valid.shape,y_valid.shape)
print(x_train.shape,y_train.shape)
print(x_test.shape,y_test.shape)


'''数据处理'''
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
x_train_scaled=scaler.fit_transform(
    x_train.astype(np.float32).reshape(-1,1)).reshape(-1,28,28,1)
x_valid_scaled=scaler.fit_transform(
    x_valid.astype(np.float32).reshape(-1,1)).reshape(-1,28,28,1)
x_test_scaled=scaler.fit_transform(
    x_test.astype(np.float32).reshape(-1,1)).reshape(-1,28,28,1)


'''模型构建'''
model = keras.models.Sequential()
model.add(keras.layers.Conv2D(filters=32,kernel_size=3,
                             padding='same',
                             activation='selu',
                             input_shape=(28,28,1)))
model.add(keras.layers.Conv2D(filters=32,kernel_size=3,
                             padding='same',
                             activation='selu'))
model.add(keras.layers.MaxPool2D(pool_size=2))
model.add(keras.layers.Conv2D(filters=64,kernel_size=3,
                             padding='same',
                             activation='selu'))
model.add(keras.layers.Conv2D(filters=64,kernel_size=3,
                             padding='same',
                             activation='selu'))
model.add(keras.layers.MaxPool2D(pool_size=2))
model.add(keras.layers.Conv2D(filters=128,kernel_size=3,
                             padding='same',
                             activation='selu'))
model.add(keras.layers.Conv2D(filters=128,kernel_size=3,
                             padding='same',
                             activation='selu'))
model.add(keras.layers.MaxPool2D(pool_size=2))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128,activation='relu'))
model.add(keras.layers.Dense(10,activation="softmax"))



model.compile(loss="sparse_categorical_crossentropy",
             optimizer = "sgd",
             metrics = ["accuracy"])
logdir = './cnn-selu-callbacks'
if not os.path.exists(logdir):
    os.mkdir(logdir)
output_model_file = os.path.join(logdir,
                                "fashion mnist model.h5")

callbacks = [
    keras.callbacks.TensorBoard(logdir),
    keras.callbacks.ModelCheckpoint(output_model_file,
                                   save_best_only = True),
    keras.callbacks.EarlyStopping(patience=5,min_delta=1e-3),

]

'''训练'''
history = model.fit(x_train_scaled,y_train,epochs=10,
                   validation_data=(x_valid_scaled,y_valid),
                   callbacks = callbacks)

'''画图看趋势'''
def plot_learning_curves(history):
    pd.DataFrame(history.history).plot(figsize=(8,5))
    plt.grid(True)
    plt.gca().set_ylim(0,1)
    plt.show()

plot_learning_curves(history)
model.evaluate(x_test_scaled,y_test)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值