动手学深度学习
文章平均质量分 85
catcous
这个作者很懒,什么都没留下…
展开
-
pytorch基础
文章目录一. pytorch 基础1.1 损失函数与反向传播1.2 优化器1.3 VGG16模型的使用与修改1.4 完整网络模型的训练套路简单汇总1.4.1 网络模型的保存于读取1.4.2 完整模型套路一. pytorch 基础1.1 损失函数与反向传播先是简单的自定义tensor张量去计算loss:import torchfrom torch.nn import L1Lossfrom torch import nninputs = torch.tensor([1, 2, 3], dtype原创 2022-09-28 10:03:59 · 549 阅读 · 0 评论 -
Informer讲解PPT介绍【超详细】--AAAI 2021最佳论文:比Transformer更有效的长时间序列预测
本章再次重温informer 的重点细节,对Informer模型的问题背景与应用数据场景有了更进一步理解,按作者的表达,适用于具有周期性的数据集,适合做一个较长的时序预测,如果过于短期的预测反而不能很好的体现informer应有的性能。继续从三大挑战出发,提出三点对应的处理方法,从数学推导到实际模型验证的过程。以及论文源码中出现的一些小技巧的学习,比如 EarlyStopping的原理与使用技巧。Reference:1.细读informer与项目学习2. 类Transformer模型的长序列分析预测新方原创 2022-06-13 21:31:45 · 7650 阅读 · 16 评论 -
Vision Transformer (ViT)模型与代码实现(PyTorch)
文章目录摘要一. Visual Transformer (ViT)模型1.1 ViT模型整体结构1.2小结二. VIT 代码实现PyTorch版本摘要一. Visual Transformer (ViT)模型论文源地址:https://arxiv.org/abs/2010.11929参考博客地址:VIT详细讲解1.1 ViT模型整体结构ViT模型是基于Transformer的模型在CV视觉领域的开篇之作,本篇将尽可能简洁地介绍一下ViT模型的整体架构以及基本原理。ViT模型是基于Transfor原创 2022-05-30 10:29:29 · 10314 阅读 · 5 评论 -
Transforemr模型从零搭建Pytorch逐行实现
文章目录摘要一. 细致理解Transforemr模型Encoder原理讲解与其Pytorch逐行实现1.1 关于word embedding1.2 生成源句子与目标句子1.3 构建postion embedding1.4 构建encoder 的self-attention mask1.5 构建 intra_attention 的mask(交叉attention)摘要本周从NLP方向,详细理解了Transformer的词向量,位置编码,编码器的子注意力的mask原理,以及一. 细致理解Transfo原创 2022-05-23 21:14:56 · 1122 阅读 · 0 评论 -
Informerd详解(2)与C#百度地图定位显示项目学习
文章目录摘要一.Informer代码部分(2)1.1 Deconder模块代码二.三. conda环境导入导出摘要一.Informer代码部分(2)1.1 Deconder模块代码二.三. conda环境导入导出代码运行环境的原创 2022-05-15 23:17:56 · 1361 阅读 · 0 评论 -
Informer源码-exp.informer.py的详细注释
exp.informer.py的详细简单注释# 数据加载器import datetimeimport sys# 在自定义的data模块中import pandas as pdfrom data.data_loader import Dataset_ETT_hour, Dataset_ETT_minute, Dataset_Custom, Dataset_Pred#from exp.exp_basic import Exp_Basic# 导入模型from models.model im原创 2022-05-15 17:52:16 · 2597 阅读 · 5 评论 -
CGAN—LSGAN的原理与实现与informer代码理解(1)
文章目录摘要一.摘要一.原创 2022-05-08 19:28:32 · 3294 阅读 · 3 评论 -
GAN原始论文-代码详解与项目数据定时同步实现
文章目录摘要一. GAN原始论文原理导读与pytorch代码实现1.1 GAN的简单介绍1.2 生成对抗网络GAN的定义1.3 GAN的算法流程摘要一. GAN原始论文原理导读与pytorch代码实现GAN原始论文:原始论文下载地址1.1 GAN的简单介绍首先我们用一句话来概括下原始GAN。原始GAN由两个有机中整体构成——生成器 GGG 和判别器 DDD ,生成器的目的就是将随机输入的高斯噪声映射成图像(“假图”),判别器则是判断输入图像是否来自生成器的概率,即判断输入图像是否为假图的概率。G原创 2022-04-24 20:44:02 · 2407 阅读 · 1 评论 -
细读informer与项目学习
文章目录原创 2022-04-17 19:22:27 · 8323 阅读 · 4 评论 -
Informer模型与基础学习
文章目录摘要文献阅读一. Informer: 一个基于Transformer改进的高效的长时间序列预测模型1.1 论文摘要1.2 研究内容1.3 Informer模型架构预备知识LSTF问题定义Encoder-Decoder 体系结构1.4 创新点1.5二. pytorch 基础2.1 损失函数与反向传播2.2 优化器2.3 VGG16模型的使用与修改2.4 完整网络模型的训练套路简单汇总2.4.1 网络模型的保存与读取2.4.2 完整模型套路创建网络模型(model.py要确保与train.py在同一文件原创 2022-04-10 20:30:50 · 14097 阅读 · 3 评论 -
Transformer的理解与代码实现—Autoformer文献阅读
文章目录摘要一. 关于Transformer的相关学习1.1 手推transformer1.1.1 Encoder部分1.1.2 Decoder部分1.2 Transformer的理解与实现(Pytorch)1.2.1 seq2seq模型1.2.2 Transformer的简单实现1.2.2.1 整体结构1.2.2.2 Encoder编码器的代码实现1.2.2.3 PositionalEncoding 代码实现1.2.2.4 get_attn_pad_mask的细节1.2.2.5 EncoderLa原创 2022-03-27 14:59:28 · 9524 阅读 · 14 评论 -
Transformer在Pytorch中的从零实现完整代码
目录Transformer在Pytorch中的从零实现完整代码Transformer在Pytorch中的从零实现完整代码## from https://github.com/graykode/nlp-tutorial/tree/master/5-1.Transformer# -*- coding: utf-8 -*-import numpy as npimport torchimport torch.nn as nnimport torch.optim as optimimport matp原创 2022-03-25 10:15:21 · 2102 阅读 · 1 评论 -
定时自动转储数据--项目后台管理界面
摘要一. 条件查询结果定时转储数据的实现使用nvaicat 15 for mysql 即可实现(使用命令较为繁琐)在test数据库下新建条件查询事件本次是查询统计在学生成绩表的按季度和课程统计成绩的最大值,最小值,平均值。直接导出查询结果,按你需要的导出文件格式记得添加事件戳,并保存导出查询,但不要点开始。保存之后,将统计成绩表查询导出,自动运行,将查询事件拖入任务计划中。(注意:先保存任务查询,后才以设置任务计划。)根据需求设置执行事件的时间点,开始——截止,间隔时间,就原创 2021-12-05 22:07:18 · 1618 阅读 · 0 评论 -
Anaconda镜像安装Pytorch--GPU版 (Windows系统)
目录一. Anaconda镜像安装tensorflow-gpu1.14及Keras超详细版二. Anaconda镜像安装GPU版pytorch0.导入镜像包1.创建Python环境2.激活环境3. conda安装pytorch-GPU 与对应版本的cuda,cudnn4. 3. 检测是否安装成功一. Anaconda镜像安装tensorflow-gpu1.14及Keras超详细版安装tensorflow-gpu1.14及Keras(参考该博主)超级详细的过程在链接中。下载安装好了cuda10.0,与对原创 2021-11-28 18:11:58 · 5824 阅读 · 0 评论 -
Anaconda环境下安装CPU版tensorflow,Keras,jupyter notebook简单实现
文章目录1. 下载Anaconda2. 在anaconda prompt zhong 创建环境3. 激活环境4. 下面是在环境中使用清华镜像 安装CPU 版的tensorflow (可指定版本),并注意版本匹配问题。5.安装完毕1. 下载Anaconda详细安装步骤2. 在anaconda prompt zhong 创建环境conda create -n gx python=3.6#(gx 是环境名,后面必须指定安装该环境的python 版本)3. 激活环境conda activate gx原创 2021-11-20 22:30:35 · 3872 阅读 · 0 评论 -
动手学深度学习实践(李沐)——LSTM模型
LSTM计算逻辑流程图:对比——GRU计算逻辑流程:原创 2021-11-20 11:13:08 · 1860 阅读 · 0 评论 -
学习笔记——动手学深度学习(RNN,GRU,LSTM)
文章标题摘要1. RNN循环神经网络1.1 无隐藏状态的神经网络1.2 有隐藏状态的循环神经网络1.3 以文本数据集为例实现RNN预测模型1.3.1 读取数据1.3.2 独热编码(词)1.3.3 初始化RNN的模型参数1.3.4 定义RNN模型1.3.5 创建一个类来包装这些函数1.3.6 梯度裁剪1.3.7 预测(未训练先预测)1.3.8 开始训练1.4 简洁实现RNN文本预测模型2. 门控循环单元(GRU)2.1 重置门和更新门2.2 候选隐藏状态2.3 隐藏状态2.4 代码实现GRU模型2.4.原创 2021-10-31 18:41:29 · 2456 阅读 · 1 评论 -
动手学深度学习李沐 —预备知识01
文章目录1.1.原创 2021-09-18 20:59:47 · 584 阅读 · 0 评论