长时序预测的最新模型详细讲解记录版

文章详细记录了Informer模型的代码运行过程,包括环境配置,从GitHub下载数据集,特别是WTH.csv数据集的特性。在数据处理方面,重点介绍了如何使用Dataset_Custom函数处理数据。代码执行从main_informer.py开始,通过参数解析进行训练和预测,并建议通过debug理解函数作用和数据流程。
摘要由CSDN通过智能技术生成

一、Informer代码运行过程记录

Informer 代码源码算比较简单的了,比如三维重建这些才是真的复杂的。

2.1 环境配置

在这里插入图片描述
版本一般向下兼容,不建议一个项目一个环境,先缺啥补啥,都是可以实现的。

2.2 数据集下载

GitHub官网链接地址即可下载,查看各数据的格式与参数,作者的开源比较完备,包含ETT(变压器温度)、ECL(耗电量)和WTH(气象)3个数据集,采用PyTorch实现且没有特殊包依赖的模型代码。比如下面的例子:
在这里插入图片描述
WTH.csv数据集是按小时收集的指标,分别是风变、…、等特征变量,**第一个必须是采样时间,前10个是X,**最后一个是Y。

分清楚输入输出:

2.3 源码运行

从哪里开始运行,需要从训练与预测,先查看REAME.md文档:
在这里插入图片描述
可见需要 从 main_informer.py开始运行,需要参数,model, data, attn, freq。

开始debug:(学会动手打断点,清楚数据流程,各函数作用)

1.parser参数
args = parser.parse_args() 在此处debug,显示个参数默认值。

在这里插入图片描述
1.2 点击train查看是怎么训练的

上面一直debug到train,查看train的过程运行是怎么样的

在这里插入图片描述
查看get_data是怎么做的,点击

在这里插入图片描述
Data是 Dataset_Custom 用这个去取数据的,点击查看 Dataset_Custom 函数怎么取自定义的数据,处理数据。

在这里插入图片描述
0 -训练集、1-测试集、2-验证集

没有事前切分 现直接划分训练集、测试集、验证集
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值