论文源码
文章平均质量分 67
catcous
这个作者很懒,什么都没留下…
展开
-
Anaconda镜像安装Pytorch--GPU版 (Windows系统)
目录一. Anaconda镜像安装tensorflow-gpu1.14及Keras超详细版二. Anaconda镜像安装GPU版pytorch0.导入镜像包1.创建Python环境2.激活环境3. conda安装pytorch-GPU 与对应版本的cuda,cudnn4. 3. 检测是否安装成功一. Anaconda镜像安装tensorflow-gpu1.14及Keras超详细版安装tensorflow-gpu1.14及Keras(参考该博主)超级详细的过程在链接中。下载安装好了cuda10.0,与对原创 2021-11-28 18:11:58 · 5824 阅读 · 0 评论 -
Informer讲解PPT介绍【超详细】--AAAI 2021最佳论文:比Transformer更有效的长时间序列预测
本章再次重温informer 的重点细节,对Informer模型的问题背景与应用数据场景有了更进一步理解,按作者的表达,适用于具有周期性的数据集,适合做一个较长的时序预测,如果过于短期的预测反而不能很好的体现informer应有的性能。继续从三大挑战出发,提出三点对应的处理方法,从数学推导到实际模型验证的过程。以及论文源码中出现的一些小技巧的学习,比如 EarlyStopping的原理与使用技巧。Reference:1.细读informer与项目学习2. 类Transformer模型的长序列分析预测新方原创 2022-06-13 21:31:45 · 7650 阅读 · 16 评论 -
Vision Transformer (ViT)模型与代码实现(PyTorch)
文章目录摘要一. Visual Transformer (ViT)模型1.1 ViT模型整体结构1.2小结二. VIT 代码实现PyTorch版本摘要一. Visual Transformer (ViT)模型论文源地址:https://arxiv.org/abs/2010.11929参考博客地址:VIT详细讲解1.1 ViT模型整体结构ViT模型是基于Transformer的模型在CV视觉领域的开篇之作,本篇将尽可能简洁地介绍一下ViT模型的整体架构以及基本原理。ViT模型是基于Transfor原创 2022-05-30 10:29:29 · 10314 阅读 · 5 评论 -
VIT模型简洁理解版代码
目录VIT模型简洁理解版代码VIT模型简洁理解版代码## from https://github.com/lucidrains/vit-pytorchimport osos.environ['KMP_DUPLICATE_LIB_OK'] = 'True'import torchimport torch.nn.functional as Fimport matplotlib.pyplot as pltfrom torch import nnfrom torch import Tensor原创 2022-05-29 16:58:25 · 3314 阅读 · 0 评论 -
Transforemr模型从零搭建Pytorch逐行实现
文章目录摘要一. 细致理解Transforemr模型Encoder原理讲解与其Pytorch逐行实现1.1 关于word embedding1.2 生成源句子与目标句子1.3 构建postion embedding1.4 构建encoder 的self-attention mask1.5 构建 intra_attention 的mask(交叉attention)摘要本周从NLP方向,详细理解了Transformer的词向量,位置编码,编码器的子注意力的mask原理,以及一. 细致理解Transfo原创 2022-05-23 21:14:56 · 1122 阅读 · 0 评论 -
informer源码注释详情记录
目录main_informer.py 源码详情注释main_informer.py 源码详情注释import argparseimport datetimeimport jsonimport osimport shutilimport sysimport pandas as pdimport torchfrom exp.exp_informer import Exp_Informerfrom utils.visualization import *from utils.initi原创 2022-05-15 19:07:26 · 2400 阅读 · 9 评论 -
Informer源码-exp.informer.py的详细注释
exp.informer.py的详细简单注释# 数据加载器import datetimeimport sys# 在自定义的data模块中import pandas as pdfrom data.data_loader import Dataset_ETT_hour, Dataset_ETT_minute, Dataset_Custom, Dataset_Pred#from exp.exp_basic import Exp_Basic# 导入模型from models.model im原创 2022-05-15 17:52:16 · 2597 阅读 · 5 评论