1、replace替换
replace就是最简单的字符串替换,当一串字符串中有可能会出现的敏感词时,我们直接使用相应的replace方法用*替换出敏感词即可。
缺点:
文本和敏感词少的时候还可以,多的时候效率就比较差了。
示例代码:
text = '我是一个来自星星的超人,具有超人本领!'
text = text.replace("超人", '*' * len("超人")).replace("星星", '*' * len("星星"))
print(text) # 我是一个来自***的***,具有***本领!
运行结果:
如果是多个敏感词可以用列表进行逐一替换。
示例代码:
text = '我是一个来自星星的超人,具有超人本领!'
words = ['超人', '星星']
for word in words:
text = text.replace(word, '*' * len(word))
print(text) # 我是一个来自***的***,具有***本领!
运行效果:
2、正则表达式
使用正则表达式是一种简单而有效的方法,可以快速地匹配敏感词并进行过滤。在这里我们主要是使用“|”来进行匹配,“|”的意思是从多个目标字符串中选择一个进行匹配。
示例代码:
import re
def filter_words(text, words):
pattern = '|'.join(words)
return re.sub(pattern, '***', text)
if __name__ == '__main__':
text = '我是一个来自星星的超人,具有超人本领!'
words = ['超人', '星星']
res = filter_words(text, words)
print(res) # 我是一个来自***的***,具有***本领!
运行结果:
更多re.sub()用法,详解博文:re.sub()用法详解_IT之一小佬的博客-CSDN博客
3、使用ahocorasick第三方库
ahocorasick库安装:
pip install pyahocorasick
示例代码:
import ahocorasick
def filter_words(text, words):
A = ahocorasick.Automaton()
for index, word in enumerate(words):
A.add_word(word, (index, word))
A.make_automaton()
result = []
for end_index, (insert_order, original_value) in A.iter(text):
start_index = end_index - len(original_value) + 1
result.append((start_index, end_index))
for start_index, end_index in result[::-1]:
text = text[:start_index] + '*' * (end_index - start_index + 1) + text[end_index + 1:]
return text
if __name__ == '__main__':
text = '我是一个来自星星的超人,具有超人本领!'
words = ['超人', '星星']
res = filter_words(text, words)
print(res) # 我是一个来自***的***,具有***本领!
运行结果:
4、字典树
使用字典树是一种高效的方法,可以快速地匹配敏感词并进行过滤。
示例代码:
class TreeNode:
def __init__(self):
self.children = {}
self.is_end = False
class Tree:
def __init__(self):
self.root = TreeNode()
def insert(self, word):
node = self.root
for char in word:
if char not in node.children:
node.children[char] = TreeNode()
node = node.children[char]
node.is_end = True
def search(self, word):
node = self.root
for char in word:
if char not in node.children:
return False
node = node.children[char]
return node.is_end
def filter_words(text, words):
tree = Tree()
for word in words:
tree.insert(word)
result = []
for i in range(len(text)):
node = tree.root
for j in range(i, len(text)):
if text[j] not in node.children:
break
node = node.children[text[j]]
if node.is_end:
result.append((i, j))
for start_index, end_index in result[::-1]:
text = text[:start_index] + '*' * (end_index - start_index + 1) + text[end_index + 1:]
return text
if __name__ == '__main__':
text = '我是一个来自星星的超人,具有超人本领!'
words = ['超人', '星星']
res = filter_words(text, words)
print(res) # 我是一个来自***的***,具有***本领!
运行结果:
5、DFA算法
使用DFA算法是一种高效的方法,可以快速地匹配敏感词并进行过滤。DFA的算法,即Deterministic Finite Automaton算法,翻译成中文就是确定有穷自动机算法。它的基本思想是基于状态转移来检索敏感词,只需要扫描一次待检测文本,就能对所有敏感词进行检测。
示例代码:
class DFA:
def __init__(self, words):
self.words = words
self.build()
def build(self):
self.transitions = {}
self.fails = {}
self.outputs = {}
state = 0
for word in self.words:
current_state = 0
for char in word:
next_state = self.transitions.get((current_state, char), None)
if next_state is None:
state += 1
self.transitions[(current_state, char)] = state
current_state = state
else:
current_state = next_state
self.outputs[current_state] = word
queue = []
for (start_state, char), next_state in self.transitions.items():
if start_state == 0:
queue.append(next_state)
self.fails[next_state] = 0
while queue:
r_state = queue.pop(0)
for (state, char), next_state in self.transitions.items():
if state == r_state:
queue.append(next_state)
fail_state = self.fails[state]
while (fail_state, char) not in self.transitions and fail_state != 0:
fail_state = self.fails[fail_state]
self.fails[next_state] = self.transitions.get((fail_state, char), 0)
if self.fails[next_state] in self.outputs:
self.outputs[next_state] += ', ' + self.outputs[self.fails[next_state]]
def search(self, text):
state = 0
result = []
for i, char in enumerate(text):
while (state, char) not in self.transitions and state != 0:
state = self.fails[state]
state = self.transitions.get((state, char), 0)
if state in self.outputs:
result.append((i - len(self.outputs[state]) + 1, i))
return result
def filter_words(text, words):
dfa = DFA(words)
result = []
for start_index, end_index in dfa.search(text):
result.append((start_index, end_index))
for start_index, end_index in result[::-1]:
text = text[:start_index] + '*' * (end_index - start_index + 1) + text[end_index + 1:]
return text
if __name__ == '__main__':
text = '我是一个来自星星的超人,具有超人本领!'
words = ['超人', '星星']
res = filter_words(text, words)
print(res) # 我是一个来自***的***,具有***本领!
运行结果: