435. 无重叠区间
思路: 重叠区间典型题目,先按照左边界排序,再从左到右判断相邻区间是否重叠,重叠则删除其中一个。
class Solution {
public int eraseOverlapIntervals(int[][] intervals) {
Arrays.sort(intervals,(a,b)->{
return Integer.compare(a[0],b[0]);
});
int remove=0;
int pre = intervals[0][1];//存储上一个区间的结尾位置
for(int i=1;i<intervals.length;i++){
if(intervals[i][0]<pre){//当有重合时,移除结尾较大的元素
remove++;
pre=Math.min(pre,intervals[i][1]);//更新当前结尾为区间结尾较小的位置
}else{
pre=intervals[i][1];//否则直接更新pre到当前位置。
}
}
return remove;
}
}
时间复杂度:O(nlog n) ,有一个快排
空间复杂度:O(n),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间
763.划分字母区间
思路: 和45.跳跃游戏II的思路很像
在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。
可以分为如下两步:
- 统计每一个字符最后出现的位置
- 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点
class Solution {
public List<Integer> partitionLabels(String s) {
int[] list=new int[26];//存储字符的最远位置
char[] sList=s.toCharArray();
for(int i=0;i<sList.length;i++){//初始化最远位置数组
list[sList[i]-'a']=i;
}
List<Integer> res=new ArrayList<>();
int end=0;//这一步的最远位置
int len=0;//当前走的长度
for(int i=0;i<sList.length;i++){
len++;
end=Math.max(end,list[sList[i]-'a']);
if(i==end) {
res.add(len);
len=0;
}
}
return res;
}
}
时间复杂度:O(n)
空间复杂度:O(1),使用的hash数组是固定大小
56. 合并区间
思路: 本题的本质其实还是判断重叠区间问题。
和 452. 用最少数量的箭引爆气球和 435. 无重叠区间都是一个套路。
这几道题都是判断区间重叠,区别就是判断区间重叠后的逻辑,本题是判断区间重贴后要进行区间合并。
class Solution {
public int[][] merge(int[][] intervals) {
Arrays.sort(intervals,(a,b)->Integer.compare(a[0],b[0]));
int start=intervals[0][0];//动态的开始位置
int end=intervals[0][1];//结束位置
List<int[]> res=new ArrayList<>();
for(int i=1;i<intervals.length;i++){
if(intervals[i][0]<=end){//如果有重合
end=Math.max(intervals[i][1],end);//更新end位置
}
else{//没有重合则添加到结果中,并更新start和end的位置
res.add(new int[]{start,end});
start=intervals[i][0];
end=intervals[i][1];
}
}
res.add(new int[]{start,end});
return res.toArray(new int[res.size()][]);
}
}
时间复杂度: O(nlogn)
空间复杂度: O(logn),排序需要的空间开销