java算法day44 | 动态规划part06 ● 完全背包 ● 518. 零钱兑换 II ● 377. 组合总和 Ⅳ

完全背包理论基础

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
体现在代码中就是对背包的遍历顺序不同。01背包是逆序遍历背包,完全背包是顺序遍历背包。

518. 零钱兑换 II

在这里插入图片描述
在这里插入图片描述

class Solution {
    public int change(int amount, int[] coins) {
        //1、定义dp数,dp[i]表示总金额为i时有n种拼凑方式
        int[] dp=new int[amount+1];
        dp[0]=1;//3、初始化,当总金额为零时有一种方案
        for(int i=0;i<coins.length;i++){//4、遍历顺序,因为是完全背包,所以正遍历
            for(int j=1;j<=amount;j++){
                if(j>=coins[i]) dp[j]=dp[j]+dp[j-coins[i]];//2、递推公式
            }
        }
        return dp[amount];
    }
}

时间复杂度: O(mn),其中 m 是amount,n 是 coins 的长度
空间复杂度: O(m)

377. 组合总和 Ⅳ

在这里插入图片描述
在这里插入图片描述

注意: 这道题看起来和上一题类似,但有坑!这道题是求排列数,上道题是组合数。两种场景的代码上的区别体现在遍历顺序:
组合问题:先遍历物品,再遍历背包
排列问题:先遍历背包,再遍历物品

class Solution {
    public int combinationSum4(int[] nums, int target) {
        int[] dp=new int[target+1];//1、定义dp数组
        dp[0]=1;//3、初始化
        for(int j=1;j<=target;j++){//4、遍历顺序:排列数要先遍历背包再遍历物品
            for(int i=0;i<nums.length;i++){
                if(j>=nums[i])  dp[j]=dp[j]+dp[j-nums[i]];//2、递推公式
            }
        }
        return dp[target];
    }
}

时间复杂度: O(target * n),其中 n 为 nums 的长度
空间复杂度: O(target)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值