java算法day56 | 动态规划part15 ● 392.判断子序列 ● 115.不同的子序列

文章讲述了如何通过动态规划方法解决字符串子序列问题,分别介绍了isSubsequence函数(判断s是否为t的子序列)和numDistinct函数(计算不同子序列的数量),涉及dp数组的定义、递推公式、初始化和遍历顺序的确定。
摘要由CSDN通过智能技术生成

392.判断子序列

在这里插入图片描述
在这里插入图片描述
动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
  2. 确定递推公式
    在确定递推公式的时候,首先要考虑如下两种操作,整理如下:
    if (s[i - 1] == t[j - 1])
    t中找到了一个字符在s中也出现了
    if (s[i - 1] != t[j - 1])
    相当于t要删除元素,继续匹配
  3. dp数组如何初始化
    从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。
    4.确定遍历顺序
    同理从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右
  4. 模拟递归
class Solution {
    public boolean isSubsequence(String s, String t) {
        int[][] dp=new int[s.length()+1][t.length()+1];
        for(int i=1;i<=s.length();i++){
            for(int j=1;j<=t.length();j++){
                if(s.charAt(i-1)==t.charAt(j-1)){
                    dp[i][j]=dp[i-1][j-1]+1;
                }else{
                    dp[i][j]=dp[i][j-1];
                }
            }
        }
        return dp[s.length()][t.length()]==s.length();
    }
}

115.不同的子序列

在这里插入图片描述
在这里插入图片描述

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。
  2. 确定递推公式
    这一类问题,基本是要分析两种情况
    -s[i - 1] 与 t[j - 1]相等
    s[i - 1] 与 t[j - 1] 不相等
  • 当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。
    一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。
    一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
    所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
  • 当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]
    所以递推公式为:dp[i][j] = dp[i - 1][j];
  1. dp数组如何初始化
    从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。
    在这里插入图片描述

dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

  1. 确定遍历顺序
    从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。
  2. 举例推导dp数组
class Solution {
    public int numDistinct(String s, String t) {
        int[][] dp=new int[s.length()+1][t.length()+1];
        for(int i=0;i<=s.length();i++){
            dp[i][0]=1;
        }
        for(int i=1;i<s.length()+1;i++){
            for(int j=1;j<t.length()+1;j++){
                if(s.charAt(i-1)==t.charAt(j-1)){
                    dp[i][j]=dp[i-1][j-1]+dp[i-1][j];
                }else{
                    dp[i][j]=dp[i-1][j];
                }
            }
        }
        return dp[s.length()][t.length()];
        

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值