对偶和Benders分解算法

对偶定理

max      cx                                       
s.t.     Ax ≤ b                                       
         x ≥ 0                                        
        (uA - c)x ≥ 0                                       
 min       ub
  s.t.     uA ≥ c 
           u ≥ 0
           u(Ax - b) ≤ 0

原式是max:x与对偶不等式(uA - c)同号,对偶变量u与原不等式(Ax - b)异号;
原式是min:x与对偶不等式(uA - c)异号,对偶变量u与原不等式(Ax - b)同号;
疑问:当原式中x范围是特定有限区间,u的范围是多少?

benders 分解

对于一个线性规划问题,将之分解成两个问题,一个子问题,一个主问题,主问题包含复杂变量,子问题中将复杂变量看做是常数,那么就剩下简单的线性变量,子问题就是一个可以求解的纯线性规划问题。给一个初始值求解主问题,求得的解带入子问题中验证,如果主问题的解不符合子问题的条件,加一些约束给主问题,如果符合标准,就是最优值,具体例子如下:

示例

  • 14
    点赞
  • 77
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
Benders分解算法是一种常用的优化算法,适用于解决具有大规模决策变量和约束条件的复杂问题。该算法通过将问题分解为主问题和子问题来求解,主要用于解决线性和混合整数优化问题。 Benders分解算法的核心思想是将原问题分解为一个主问题和多个子问题。主问题通常是一个线性规划问题,其中包含决策变量的主要部分,而子问题则是一组约束问题,包含决策变量的次要部分。主问题和子问题通过一组双向约束进行交互,并通过迭代迭代的方式逐步优化解决方案。 在每一次迭代中,主问题首先被求解,得到当前的主问题解,然后将这个解传递给子问题。子问题则在主问题解的基础上进行求解,并计算出子问题对主问题解的改进量,即称为割平面。割平面是一种附加的线性约束条件,用于修正主问题解从而得到更优解。 Benders分解算法的优点是可以将原有的复杂问题分解为更小、更易处理的子问题,对于大规模问题的求解具有高效性和可行性。同时,该算法还可以通过增加割平面的方式提高求解结果的精确度。 Benders分解算法在实际应用中有广泛的应用。例如,在供应链中,可以使用Benders分解算法解决资源配置问题和需求满足问题;在网络规划中,可以使用该算法解决最优路径选择问题;在能源管理中,可以使用该算法解决能源调度和能源优化问题。 总之,Benders分解算法是一种高效、可行的优化算法,适用于解决具有大规模决策变量和约束条件的复杂问题。它通过将问题分解为主问题和子问题,并通过割平面的方式逐步优化解决方案,提供了一种有效的求解方法。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值