(一)环境配置
本专题是为了记录学习mmdetection的过程,包括mmdetection的配置、代码的讲解,如何使用mmdetection训练自己的数据集。本节只记录第一部分,环境配置过程。本专题主要是在Linux下配置的,因为mmdetection在linux系统下较为友好,当然也可在windows10下配置,配置过程在我之前的博客中可以找到,在windows下配置较为复杂,建议大家在Linux下配置。
1. mmdetection介绍
mmdetection是商汤科技和香港中文大学开源的一个基于Pytorch实现的深度学习目标检测工具,支持Faster-RCNN、Mask-RCNN、YOLOV3、CascadeRcnn等目标检测框架,其主要特点是,模块化设计、支持多种目标检测模型、使用起来较为方便。
2. mmdetection配置
首先介绍一下自己的环境,Ubuntu20.04+cuda11.0。
mmdetection有以下要求,安装时需要注意,不要安装太早的版本。
- Python 3.6+
- PyTorch 1.3+
- CUDA 9.2+ (If you build PyTorch from source,CUDA 9.0 is also compatible)
- GCC 5+
2.1 下载源码
代码链接https://github.com/open-mmlab/mmdetection
首先先将代码clone到本地,在你想放代码的路径中打开终端,输入
git clone https://github.com/open-mmlab/mmdetection.git
如果下载失败,或者下载较慢的话,可以用使用github的镜像下载。代码文件夹如下图所示。