【超详细】记录从零开始学mmdetection(一)

本文详细介绍了在Ubuntu20.04系统上配置mmdetection的步骤,包括环境要求、下载源码、创建虚拟环境、安装PyTorch、MMCV以及MMDetection。特别强调了版本对应关系,如PyTorch需1.7.0,MMCV需与MMDetection版本匹配,并提供了验证安装成功的操作方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(一)环境配置

本专题是为了记录学习mmdetection的过程,包括mmdetection的配置、代码的讲解,如何使用mmdetection训练自己的数据集。本节只记录第一部分,环境配置过程。本专题主要是在Linux下配置的,因为mmdetection在linux系统下较为友好,当然也可在windows10下配置,配置过程在我之前的博客中可以找到,在windows下配置较为复杂,建议大家在Linux下配置。

1. mmdetection介绍

mmdetection是商汤科技和香港中文大学开源的一个基于Pytorch实现的深度学习目标检测工具,支持Faster-RCNN、Mask-RCNN、YOLOV3、CascadeRcnn等目标检测框架,其主要特点是,模块化设计、支持多种目标检测模型、使用起来较为方便。

2. mmdetection配置

首先介绍一下自己的环境,Ubuntu20.04+cuda11.0。
mmdetection有以下要求,安装时需要注意,不要安装太早的版本。

  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+ (If you build PyTorch from source,CUDA 9.0 is also compatible)
  • GCC 5+

2.1 下载源码

代码链接https://github.com/open-mmlab/mmdetection
首先先将代码clone到本地,在你想放代码的路径中打开终端,输入
git clone https://github.com/open-mmlab/mmdetection.git
如果下载失败,或者下载较慢的话,可以用使用github的镜像下载。代码文件夹如下图所示。
picture

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值