摘要
在传统的KM或Cox回归分析中,通常我们在研究的起始点测量一个风险因素,并分析它对之后的事件发生(例如死亡事件)的影响。但是在之后的跟踪随访过程中,事情可能在变化:在基线固定的风险因素对事件发生的影响随着事件在变化;或者风险因素本身也可能随事件改变。在本文中,我们讨论在基线时固定的风险因素,对比它短期和长期效应(这里称之为时间依存效应,time-dependent effects),著名的例子是肾脏移植后直接死亡率高于渡过3个月存活期后的死亡率。更进一步,我们讨论一个随时间变化的风险因素(这里称之为时间依赖风险因素, time-dependent risk factors),例如,随着病人年龄的增加和在透析中生存期的延长,左心房体积将显著增加。以上两种都可以用time-dependent Cox regression分析。
时间依赖效应:短期和长期的对比
在研究死亡率是否和某个风险因素相关的研究中,必须要将随访时间长度考虑进去。例如,在普通人群中肥胖是一个著名的增加心血管疾病和死亡率的风险因素,但是它其实是一个超过十年随访后才会有影响的长期曝露因素。但是,在透析病人中,肥胖并没有被发现对死亡率有影响,甚至有发现认为有相反的关系[1]。有研究解释这种现象,在大量的复杂因素中一个重要原因是随访时间长度的不同,普通人群随访时间通常有超过20年的随访时间,而透析病人在不考虑他们的BMI指数的话,其生存时间通常低于10年。
例1:腹膜透析病人的BMI和生存
Snyder等人[2]报道了41,197个腹膜透析(PD)患者的逐年