4. 时间依存系数
时间依存协变量(covariates)和时间依存系数(coefficients)是两种不同的扩展Cox模型,如下面的两个等式所示。
λ ( t ) = λ 0 ( t ) e β X ( t ) \lambda(t)=\lambda_0(t) e^{\beta X(t)} λ(t)=λ0(t)eβX(t) (1)
λ ( t ) = λ 0 ( t ) e β ( t ) X \lambda(t)=\lambda_0(t) e^{\beta (t)X} λ(t)=λ0(t)eβ(t)X (2)
等式(1)是时间依存协变量,是一种常用且易于理解的用法。 等式(2)具有时间相关系数,这种模型不太常见,但代表了一种处理非比例风险的方法。而通常比例风险假设恰恰是不随时间变化的系数: β ( t ) = c \beta (t)=c β(t)=c 。cox.zph函数将绘制研究的 β ( t ) \beta (t) β(t)的估计值,用于诊断和理解非比例危险。以下是一个使用退伍军人癌症数据veteran的测试案例。
library(survival)
options(show.signif.stars=FALSE)
vfit<-coxph(Surv(time,status)~trt+prior+karno, veteran)
vfit
quantile(veteran$karno)
zp<-cox.zph(vfit, transform=function(time) log(time+20))
zp
plot(zp[3])
abline(0,0, col=2)
abline(h=vfit$coef[3], col=3, lwd=2, lty=2)
Karnofsky得分是一个非常重要的预测因子,但它的效果随着时间的推移并不是恒定的,如测试结果和绘图所示。 在早期它有一个很大的负面效果:在第一个四分位值的病人,风险大约是在第三个四分位数值的病人的exp(35 * .03377)=3.2倍;但到了200天,这种关系已经减少到并没有多少,和零差不多了。 一种解释是,在这种非常严重的疾病中,任何超过6个月之前的措施都不再适用。
比例风险模型估计的是随时间的平均危险,其值由虚线水平线表示。 使用平均危险通常是合理的,比例风险假设毕竟不是那么精确的。 然而,在这种情况下,与均线的背离是如此之大,这时依赖于时间的系数是对实际状态则是一种更有用的总结。 cox.zph图非常适合诊断,但不能产生一个合适的 β ( t ) \beta (t) β(t),那么我们如何来建立这个模型呢?
4.1 阶梯函数
一种最简单的扩展是