目录
总结:相比较kimi,小浣熊比较适合一条一条的问更具体问题,它会引用原始数据并算出需要的值,数据可视化方面更强。
任务1--文本大模型,3.12
题目1
提示词除了三要素“角色”、“背景”、“要求”之外,还有哪些关键要素
答:
除了“角色”、“背景”、“要求”三要素之外,提示词还可以包含以下关键要素:
-
目的意图:明确任务的目标或期望结果,如“创作一个引人入胜的科幻故事”。
-
细节描述:提供具体的细节,如“故事设定在22世纪的火星殖民地”。
-
格式风格:指定输出的格式或风格,如“以新闻报道的形式呈现”。
-
限制条件:设定限制条件,如“在500字以内完成一篇散文”。
-
上下文信息:提供相关的上下文,如“根据之前讨论的内容,总结主要观点”。
-
示例参考:给出示例或参考内容,如“参考以下示例,撰写一份项目报告”。
题目2
你知道什么是大模型幻觉吗,如果文本大模型有出现幻觉的可能,应该如何规避幻觉问题,可以结合你自己的实际经历展开聊聊
答:
大模型幻觉(Hallucination)是指在生成式人工智能模型(如大型语言模型)中,模型生成的内容与现实世界中的事实、逻辑或用户输入的上下文不一致的现象。这种现象通常表现为模型生成错误信息或虚构内容,它可能会误导用户,甚至在某些专业领域引发法律责任风险。
### 幻觉的类型
- **事实性幻觉**:生成的内容与可验证的现实世界事实不一致。例如,模型错误地声称某个历史事件的时间线或主要参与者。
- **忠实性幻觉**:生成的内容与用户的指令或上下文不一致。比如,用户要求总结某篇文章,模型却生成了与文章内容无关的内容。
### 幻觉产生的原因
- **数据源问题**:模型的训练数据可能存在错误、偏见或不完整,导致模型在生成内容时出现偏差。
- **训练过程问题**:在预训练和对齐阶段,模型可能会受到架构缺陷、暴露偏差等因素的影响,从而产生幻觉。
- **推理过程问题**:模型在推理时可能会过度依赖自身生成的token进行后续预测,导致错误的级联。
### 结合中学生的经历
中学生在学习过程中,可能会遇到类似的情况。比如在历史课上,学生可能会记错某个历史事件的时间或人物,这就类似于事实性幻觉。或者在写作时,学生可能会偏离题目要求,写了一些与主题无关的内容,这类似于忠实性幻觉。这些情况都可能影响学生的学习效果和成绩。
### 规避幻觉的方法
- **提高数据质量**:确保训练数据的准确性和完整性,减少错误信息和偏见。
- **优化训练过程**:改进模型的架构和训练策略,减少暴露偏差等问题。
- **改进推理策略**:在推理过程中,可以采用逐步推理、限制模型的创造力等方法,提高回答的准确性。
- **结合外部知识**:在生成内容时,可以链接外部知识库,增强模型的效果。
题目3
你是一名书法爱好者,写钢笔,现在创作一幅作品,送给朋友,作品纸有长(14)*宽(8)个格子,于是你希望用文本大模型找一首16行的七言古代诗歌(一行7个字),内容积极向上、充满乐观。尝试一下,完成这项任务。
注:书法创作一般不写标点符号,一般从右往左写
答:
青春似火燃激情
逐梦征程志不移
笑对风雨心向暖
勇攀高峰志愈坚
书山有路勤为径
学海无涯苦作舟
且看云开见月明
莫畏前路多坎坷
且喜前路多绮丽
更待明朝展宏图
同窗数载情谊厚
他日忆起心自暖
常念师长教诲言
做人做事当如山
但愿君心同此愿
岁月静好梦常圆
任务2--表格处理,3.15
题目1
用办公小浣熊处理表格确实方便,但是也面临着单个表格≤20M、单次交互不超过3个文件的局限,想一下如果你要分析的表格超过了限制,应该怎么办?如何判断AI做的表格分析是正确的、不是忽悠你的?
答:
当表格大小或交互文件数量超过办公小浣熊的限制,以及验证AI分析结果的正确性时,可以考虑以下解决方案:
### 超出限制的解决方法
- **拆分表格**:将大表格按行或列拆分成多个小表格,使其满足单个表格≤20M的限制。例如,按业务模块、时间周期等拆分,确保每个小表格完整且独立分析。
- **筛选关键数据**:提取表格中的关键数据和重要列,形成一个较小的表格进行分析,减少不必要的数据,提高效率。
- **使用外部工具预处理**:用Excel、Python的Pandas库等工具对表格进行预处理,如清洗数据、初步分析等,再将处理后的表格导入办公小浣熊进行深入分析。
- **分批次交互**:将多个文件分批次进行交互,每次交互不超过3个文件,逐步完成整个分析任务。
### 验证AI分析结果的正确性
- **逻辑验证**:检查分析结果是否符合逻辑和常识,如数据趋势、比例关系等是否合理。例如,销售额增长趋势是否与市场情况相符。
- **对比验证**:使用其他工具或方法对同一表格进行分析,对比结果是否一致。如用Excel的数据透视表功能分析数据,与办公小浣熊的结果对比。
- **抽样验证**:从表格中抽取部分数据样本,手动计算或分析,验证AI结果的准确性。如随机抽取几行数据,手动计算平均值、总和等指标,与AI结果对比。
- **逐步验证**:先让AI分析表格的一部分,确认结果正确后,再进行整体分析,降低错误风险。
- **检查分析依据**:确保AI正确理解了表格的结构和数据含义,如字段名称、数据类型等,避免误解导致的错误分析。
- **参考专业意见**:咨询领域专家或有经验的专业人士,看分析结果是否符合行业标准和实际情况,获取专业建议和意见。
题目2
对比两份人才市场招聘数据,进行数据分析,并聊聊分析思路、分析步骤、分析结论各是啥?
答:
步骤如下:
1.提示词:
假如你是数据分析师,请看下面两个数据,请问,我可以从哪些方面进行分析?都有什么分析的角度?
收到小浣熊的回复:
1. 薪资分析
- 薪资分布:分析不同城市、不同经验要求下的薪资分布情况,找出平均薪资、最高薪资和最低薪资。
- 薪资与经验的关系:分析工作经验要求与薪资水平之间的关系,看看是否经验越多薪资越高。
- 薪资与公司规模的关系:不同公司规模(如初创公司与大公司)提供的薪资是否存在显著差异。
2. 职位需求分析
- 职位数量分布:按城市、公司规模、行业等维度统计职位数量,了解哪些地区或行业对AI产品经理的需求更大。
- 关键词分析:分析职位描述中的关键词,找出最常见的技能要求(如机器学习、语义分析等),以及这些技能在不同公司或行业中的需求情况。
3. 工作经验要求分析
- 经验要求分布:统计不同职位对工作经验的要求,分析哪些职位对经验要求较高,哪些职位对经验要求较低。
- 学历要求分析:分析职位对学历的要求,看看不同公司或行业对学历的偏好。
4. 公司规模与职位福利分析
- 公司规模与福利的关系:分析不同规模的公司提供的福利(如五险一金、年终奖、带薪年假等)是否存在差异。
- 行业与福利的关系:不同行业的公司提供的福利是否存在显著差异。
5. 职位描述文本分析
- 职位描述的常见词汇:通过文本分析,提取职位描述中的常见词汇和短语,了解企业对AI产品经理的期望。
- 职位描述的长度分析:分析职位描述的长度,看看是否详细描述与薪资或公司规模存在关联。
6. 地域分析
- 不同城市的职位分布:分析不同城市中AI产品经理职位的分布情况,了解哪些城市对AI产品经理的需求更大。
- 城市与薪资的关系:分析不同城市的薪资水平,看看是否存在地域差异。
7. 行业分析
- 行业分布:分析不同行业中AI产品经理职位的分布情况,了解哪些行业对AI产品经理的需求较大。
- 行业与薪资的关系:不同行业的薪资水平是否存在显著差异。 接下来,我可以从这些角度中选择一个或多个进行具体的数据分析。你有特别感兴趣的分析方向吗?
收到kimi的答复:
以下是一些可以对这两个文件进行分析的方面和角度:
### 一、薪资待遇方面
- **薪资水平对比**:比较不同公司、不同地区、不同经验要求的AI产品经理的薪资水平,分析其差异和原因。例如,北京和深圳的薪资水平是否存在显著差异,以及差异的具体数值。
- **薪资与经验的关系**:研究薪资如何随经验年限变化,绘制经验-薪资曲线,观察不同经验段的薪资增长趋势。
- **薪资与学历的关系**:分析不同学历背景的AI产品经理的薪资差异,判断学历对薪资的影响程度。### 二、工作经验方面
- **经验要求分布**:统计不同经验年限要求的职位占比,了解市场对AI产品经理经验的总体需求情况。
- **经验与职责匹配**:结合职位描述,分析不同经验要求的职位在工作职责和要求上的差异,判断经验与工作复杂度、责任大小的关系。
- **经验与行业领域**:研究不同行业领域对AI产品经理经验要求的差异,例如互联网、金融、医疗等行业对经验的重视程度是否不同。### 三、学历背景方面
- **学历要求分布**:统计不同学历要求的职位占比,了解市场对AI产品经理学历的普遍要求。
- **学历与职业发展**:分析高学历和低学历在职位级别、薪资待遇、职业发展机会等方面的差异,评估学历对职业发展的影响。
- **学历与技能要求**:结合职位描述中的技能要求,分析不同学历背景的AI产品经理在技能掌握上的差异。### 四、公司规模与融资情况方面
- **公司规模分布**:统计不同规模公司的职位数量分布,了解AI产品经理在各类规模公司的需求情况。
- **融资情况与职位需求**:分析不同融资阶段的公司对AI产品经理的需求特点,例如未融资、上市等不同阶段公司的职位要求和薪资待遇差异。
- **公司规模与薪资福利**:研究公司规模对薪资水平、福利待遇等方面的影响,判断大型公司和小型公司在吸引人才方面的优势和劣势。### 五、行业领域方面
- **行业分布**:统计AI产品经理职位在不同行业中的分布情况,如互联网、金融、医疗、教育等,了解哪些行业对AI产品经理的需求较大。
- **行业薪资差异**:比较不同行业AI产品经理的薪资水平,分析行业薪资差异的原因,如行业发展前景、技术要求、竞争程度等。
- **行业经验要求**:研究不同行业对AI产品经理经验要求的差异,判断行业经验在不同领域的重要性。### 六、职位描述与技能要求方面
- **技能要求分析**:提取职位描述中的技能要求关键词,统计各类技能要求的出现频率,了解市场对AI产品经理的核心技能需求。
- **技能与薪资关系**:分析掌握不同技能的AI产品经理的薪资水平差异,判断哪些技能对薪资提升有较大帮助。
- **技能与职业发展**:结合技能要求和职位级别、薪资待遇等,分析技能对AI产品经理职业发展的影响,如晋升机会、职业转型等。### 七、区域差异方面(主要针对文件1的北京地区和文件2的深圳地区)
- **薪资水平差异**:比较北京和深圳AI产品经理的薪资水平,分析两地薪资差异的原因,如生活成本、经济发展水平、行业竞争等。
- **需求量差异**:统计北京和深圳AI产品经理职位的数量,了解两地对AI产品经理的需求规模差异。
- **行业分布差异**:研究北京和深圳AI产品经理职位在行业分布上的差异,分析两地产业结构和经济发展重点对人才需求的影响。
Kimi 继续给写了答案:
好的,我明白了。现在我会提供一个更详细的答案,以便与小浣熊网站的答案进行对比。这样您可以更清楚地看到不同分析角度下的具体内容。
# AI产品经理职位数据分析详细分析报告
## 一、薪资待遇分析
### (一)薪资水平对比
1. **总体薪资分布**
- **北京地区**:薪资范围在10-60K/月,其中15-30K/月的职位数量最多,占比约40%;20-40K/月次之,占比约30%。
- **深圳地区**:薪资范围在10-50K/月,15-30K/月的职位数量占比最高,约45%;20-35K/月占比约35%。
- **差异分析**:北京地区高薪职位(40K/月以上)数量略多于深圳,而深圳地区低薪职位(10-15K/月)占比稍高。
2. **行业薪资差异**
- **互联网行业**:北京地区互联网行业AI产品经理平均薪资为28K/月,深圳为25K/月。
- **金融行业**:北京金融行业AI产品经理平均薪资为26K/月,深圳为24K/月。
- **医疗行业**:北京医疗行业AI产品经理平均薪资为24K/月,深圳为22K/月。
- **教育行业**:北京教育行业AI产品经理平均薪资为23K/月,深圳为21K/月。
3. **公司规模与薪资关系**
- **大型公司(1000人以上)**:北京地区平均薪资35K/月,深圳32K/月。
- **中型公司(100-999人)**:北京平均薪资28K/月,深圳26K/月。
- **小型公司(0-99人)**:北京平均薪资22K/月,深圳20K/月。### (二)薪资与经验的关系
1. **经验-薪资曲线绘制**
- **北京地区**:
- 1-3年经验:平均薪资18K/月
- 3-5年经验:平均薪资25K/月
- 5-10年经验:平均薪资35K/月
- 10年以上经验:平均薪资45K/月
- **深圳地区**:
- 1-3年经验:平均薪资16K/月
- 3-5年经验:平均薪资22K/月
- 5-10年经验:平均薪资32K/月
- 10年以上经验:平均薪资42K/月
2. **经验对薪资增长的影响**
- **北京地区**:每增加3年经验,薪资平均增长7K/月。
- **深圳地区**:每增加3年经验,薪资平均增长6K/月。
3. **高经验人才薪资优势**
- **北京地区**:10年以上经验的AI产品经理薪资是1-3年经验的2.5倍。
- **深圳地区**:10年以上经验的AI产品经理薪资是1-3年经验的2.6倍。### (三)薪资与学历的关系
1. **不同学历薪资对比**
- **本科**:北京地区平均薪资26K/月,深圳24K/月。
- **硕士**:北京地区平均薪资32K/月,深圳28K/月。
- **大专及以下**:北京地区平均薪资20K/月,深圳18K/月。
2. **学历对薪资的提升效果**
- **北京地区**:硕士学历相比本科学历,薪资平均高出23%;大专及以下学历比本科低23%。
- **深圳地区**:硕士学历相比本科学历,薪资平均高出17%;大专及以下学历比本科低25%。
3. **高学历人才薪资优势变化趋势**
- **北京地区**:随着经验增加,硕士学历的薪资优势逐渐扩大。在1-3年经验阶段,硕士比本科高15%;在5-10年经验阶段,优势扩大到28%。
- **深圳地区**:硕士学历在3-5年经验阶段比本科高18%,在10年以上经验阶段优势扩大到22%。## 二、工作经验分析
### (一)经验要求分布
1. **总体分布情况**
- **北京地区**:3-5年经验要求的职位占比35%,1-3年占比30%,5-10年占比25%,经验不限占比10%。
- **深圳地区**:3-5年经验要求的职位占比38%,1-3年占比28%,5-10年占比22%,经验不限占比12%。
2. **行业差异**
- **互联网行业**:北京地区3-5年经验要求占比40%,深圳35%。
- **金融行业**:北京地区5-10年经验要求占比30%,深圳25%。
- **医疗行业**:北京地区经验不限占比15%,深圳10%。
- **教育行业**:北京地区1-3年经验要求占比35%,深圳30%。
3. **公司规模影响**
- **大型公司(1000人以上)**:北京地区5-10年经验要求占比40%,深圳35%。
- **中型公司(100-999人)**:北京地区3-5年经验要求占比38%,深圳40%。
- **小型公司(0-99人)**:北京地区经验不限占比20%,深圳15%。### (二)经验与职责匹配
1. **不同经验要求的职责差异**
- **1-3年经验**:主要负责协助产品开发、简单需求分析、基础用户调研等。
- **3-5年经验**:独立负责产品模块设计、复杂需求分析、用户增长策略制定等。
- **5-10年经验**:负责整体产品规划、跨部门协作、市场拓展等。
- **10年以上经验**:主导公司级产品战略、行业研究、团队管理等。
2. **经验与工作复杂度关系**
- **北京地区**:经验要求每提升一个档次,工作复杂度平均提升40%。
- **深圳地区**:经验要求每提升一个档次,工作复杂度平均提升35%。
3. **经验与责任大小关联**
- **北京地区**:3-5年经验的AI产品经理开始承担团队管理责任,5-10年经验负责更大规模团队和部门协作。
- **深圳地区**:5-10年经验的AI产品经理开始承担公司级项目管理责任,10年以上经验负责业务线整体管理。### (三)经验与行业领域
1. **不同行业对经验的重视程度**
- **互联网行业**:北京地区3-5年经验要求占比最高,说明互联网行业对中等经验人才需求旺盛。
- **金融行业**:北京地区5-10年经验要求占比相对较高,金融行业更注重资深经验。
- **医疗行业**:北京地区经验不限占比相对较高,医疗行业对经验要求相对灵活。
- **教育行业**:北京地区1-3年经验要求占比相对较高,教育行业对初级经验人才需求较大。
2. **跨行业经验认可度**
- **北京地区**:互联网行业经验在金融、教育行业有一定认可度,薪资折扣约15%。
- **深圳地区**:互联网行业经验在医疗、教育行业认可度较高,薪资折扣约10%。
3. **行业经验溢价情况**
- **北京地区**:具有金融、医疗行业经验的AI产品经理,在同等工作年限下,薪资比互联网行业高出约10%。
- **深圳地区**:具有医疗、教育行业经验的AI产品经理,薪资比互联网行业高出约8%。## 三、学历背景分析
### (一)学历要求分布
1. **总体分布情况**
- **北京地区**:本科要求占比60%,硕士占比25%,大专及以下占比15%。
- **深圳地区**:本科要求占比55%,硕士占比20%,大专及以下占比25%。
2. **行业差异**
- **互联网行业**:北京地区本科要求占比65%,深圳60%。
- **金融行业**:北京地区硕士要求占比35%,深圳30%。
- **医疗行业**:北京地区本科要求占比50%,深圳45%。
- **教育行业**:北京地区本科要求占比70%,深圳65%。
3. **公司规模影响**
- **大型公司(1000人以上)**:北京地区硕士要求占比40%,深圳35%。
- **中型公司(100-999人)**:北京地区本科要求占比65%,深圳60%。
- **小型公司(0-99人)**:北京地区大专及以下要求占比25%,深圳30%。### (二)学历与职业发展
1. **学历与职位级别关系**
- **北京地区**:本科以上学历的AI产品经理,担任高级职位的比例为45%;大专及以下学历,担任高级职位的比例为20%。
- **深圳地区**:本科以上学历的AI产品经理,担任高级职位的比例为40%;大专及以下学历,担任高级职位的比例为15%。
2. **学历对晋升机会的影响**
- **北京地区**:硕士学历的AI产品经理,晋升周期平均比本科学历短6个月;大专及以下学历,晋升周期平均比本科学历长12个月。
- **深圳地区**:硕士学历的AI产品经理,晋升周期平均比本科学历短4个月;大专及以下学历,晋升周期平均比本科学历长10个月。
3. **学历与薪资增长路径**
- **北京地区**:硕士学历的AI产品经理,在5年内薪资增长幅度平均比本科学历高25%;大专及以下学历,薪资增长幅度平均比本科学历低18%。
- **深圳地区**:硕士学历的AI产品经理,在5年内薪资增长幅度平均比本科学历高20%;大专及以下学历,薪资增长幅度平均比本科学历低15%。### (三)学历与技能要求
1. **不同学历的技能掌握差异**
- **本科及以上学历**:熟练掌握机器学习、自然语言处理等核心AI技术,熟悉产品全生命周期管理,具备较强的数据分析和市场洞察力。
- **大专及以下学历**:主要掌握基础的产品管理技能,如需求分析、用户调研等,对AI技术的深度掌握相对有限。
2. **学历与技能获取途径**
- **北京地区**:本科以上学历的AI产品经理,主要通过高校课程、专业培训获取技能;大专及以下学历,更多依赖自学和工作经验积累。
- **深圳地区**:本科以上学历的AI产品经理,通过高校课程和企业内部培训提升技能;大专及以下学历,主要通过在线课程和实践项目学习。
3. **技能要求与学历匹配度**
- **北京地区**:高技能要求的职位(如掌握深度学习、计算机视觉等),本科以上学历要求占比70%。
- **深圳地区**:高技能要求的职位,本科以上学历要求占比65%。## 四、公司规模与融资情况分析
### (一)公司规模分布
1. **总体分布情况**
- **北京地区**:1000人以上公司占比30%,100-999人占比40%,0-99人占比30%。
- **深圳地区**:1000人以上公司占比25%,100-999人占比45%,0-99人占比30%。
2. **行业集中度**
- **大型公司(1000人以上)**:北京地区主要集中在互联网、金融行业;深圳地区集中在互联网、智能硬件行业。
- **中型公司(100-999人)**:北京地区分布在互联网、医疗、教育等多个行业;深圳地区以互联网、电子商务、智能硬件为主。
- **小型公司(0-99人)**:北京地区涵盖互联网、人工智能、文化艺术等多个细分领域;深圳地区主要集中在互联网、智能硬件、电子商务等领域。
3. **融资情况与规模关系**
- **北京地区**:已上市或D轮以上融资的大型公司占比40%;A轮-B轮融资的中型公司占比50%;天使轮-种子轮融资的小型公司占比60%。
- **深圳地区**:已上市或D轮以上融资的大型公司占比35%;A轮-B轮融资的中型公司占比55%;天使轮-种子轮融资的小型公司占比65%。### (二)融资情况与职位需求
1. **不同融资阶段的职位特点**
- **未融资公司**:北京地区占比20%,职位以基础产品开发为主;深圳地区占比25%,注重产品创新和市场拓展。
- **天使轮-Pre-A轮公司**:北京地区占比30%,需要具备一定市场洞察力和产品规划能力;深圳地区占比35%,强调快速迭代和用户增长。
- **A轮-B轮公司**:北京地区占比35%,要求全面的产品管理能力;深圳地区占比30%,注重技术与产品结合。
- **C轮及以上公司**:北京地区占比15%,侧重战略规划和团队管理;深圳地区占比10%,强调行业影响力和生态建设。
2. **融资阶段与薪资福利**
- **北京地区**:C轮及以上公司平均薪资35K/月,福利最全;A轮-B轮公司平均薪资28K/月,福利较为均衡;天使轮-Pre-A轮公司平均薪资22K/月,福利以基本保障为主。
- **深圳地区**:C轮及以上公司平均薪资32K/月,福利完善;A轮-B轮公司平均薪资25K/月,福利相对全面;天使轮-Pre-A轮公司平均薪资20K/月,福利基础。
3. **融资情况与职业发展机会**
- **北京地区**:C轮及以上公司晋升机会多,内部培训完善;A轮-B轮公司成长速度快,挑战大;天使轮-Pre-A轮公司发展空间广阔,但风险较高。
- **深圳地区**:C轮及以上公司职业发展路径清晰;A轮-B轮公司晋升机会较多,但竞争激烈;天使轮-Pre-A轮公司可快速积累经验,但稳定性稍差。### (三)公司规模与薪资福利
1. **不同规模公司的薪资差异**
- **北京地区**:大型公司平均薪资35K/月,中型公司28K/月,小型公司20K/月。
- **深圳地区**:大型公司平均薪资32K/月,中型公司25K/月,小型公司18K/月。
2. **福利待遇丰富度**
- **大型公司**:北京地区90%提供五险一金,80%有绩效奖金和年终奖,60%提供股票期权和补充医疗保险;深圳地区85%提供五险一金,75%有绩效奖金和年终奖,55%提供股票期权和补充医疗保险。
- **中型公司**:北京地区80%提供五险一金,60%有绩效奖金和年终奖,40%提供股票期权;深圳地区75%提供五险一金,55%有绩效奖金和年终奖,35%提供股票期权。
- **小型公司**:北京地区60%提供五险一金,40%有绩效奖金,20%提供年终奖;深圳地区55%提供五险一金,35%有绩效奖金,15%提供年终奖。
3. **公司规模与工作环境**
- **大型公司**:北京地区70%提供免费班车或交通补助,60%有定期体检和团建活动;深圳地区65%提供免费班车或交通补助,55%有定期体检和团建活动。
- **中型公司**:北京地区50%提供免费班车或交通补助,40%有定期体检和团建活动;深圳地区45%提供免费班车或交通补助,35%有定期体检和团建活动。
- **小型公司**:北京地区30%提供免费班车或交通补助,20%有定期体检和团建活动;深圳地区25%提供免费班车或交通补助,20%有定期体检和团建活动。## 五、行业领域分析
### (一)行业分布
1. **总体分布情况**
- **北京地区**:互联网行业占比40%,金融行业15%,医疗行业12%,教育行业10%,其他行业23%。
- **深圳地区**:互联网行业占比35%,智能硬件18%,金融行业12%,电子商务10%,其他行业25%。
2. **新兴行业崛起**
- **北京地区**:人工智能、大数据等新兴行业占比逐渐增加,达到15%。
- **深圳地区**:智能硬件、物联网等新兴行业占比持续上升,达到20%。
3. **传统行业转型**
- **北京地区**:传统行业如文化艺术、广播影视等也在积极引入AI技术,占比达到8%。
- **深圳地区**:传统制造业、生活服务等行业对AI产品经理的需求也在增长,占比达到7%。### (二)行业薪资差异
1. **具体行业薪资对比**
- **北京地区**:
- **互联网行业**:平均薪资28K/月
- **金融行业**:平均薪资26K/月
- **医疗行业**:平均薪资24K/月
- **教育行业**:平均薪资23K/月
- **智能硬件行业**:平均薪资25K/月
- **深圳地区**:
- **互联网行业**:平均薪资25K/月
- **金融行业**:平均薪资24K/月
- **医疗行业**:平均薪资22K/月
- **教育行业**:平均薪资21K/月
- **智能硬件行业**:平均薪资26K/月
2. **行业薪资差异原因**
- **技术要求**:互联网和智能硬件行业对AI技术要求高,薪资相应较高。
- **行业竞争**:金融行业竞争激烈,对高端人才需求大,薪资水平较高。
- **市场潜力**:医疗、教育等行业市场潜力大,但技术复杂度相对较低,薪资略低。
3. **行业薪资变化趋势**
- **北京地区**:互联网行业薪资增长稳定,年增长率约5%;智能硬件行业随着5G等新技术发展,薪资增长较快,年增长率约7%。
- **深圳地区**:智能硬件行业薪资增长领先,年增长率约6%;互联网行业薪资增长平稳,年增长率约4%。### (三)行业经验要求
1. **不同行业经验要求差异**
- **互联网行业**:北京地区3-5年经验要求占比40%,深圳35%。
- **金融行业**:北京地区5-10年经验要求占比30%,深圳25%。
- **医疗行业**:北京地区经验不限占比15%,深圳10%。
- **教育行业**:北京地区1-3年经验要求占比35%,深圳30%。
- **智能硬件行业**:北京地区3-5年经验要求占比38%,深圳40%。
2. **行业经验的通用性**
- **北京地区**:互联网行业经验在金融、教育行业有一定认可度,薪资折扣约15%。
- **深圳地区**:互联网行业经验在医疗、教育行业认可度较高,薪资折扣约10%。
3. **行业经验溢价情况**
- **北京地区**:具有金融、医疗行业经验的AI产品经理,在同等工作年限下,薪资比互联网行业高出约10%。
- **深圳地区**:具有医疗、教育行业经验的AI产品经理,薪资比互联网行业高出约8%。## 六、职位描述与技能要求分析
### (一)技能要求分析
1. **核心技能要求**
- **机器学习**:北京地区60%的职位要求,深圳55%。
- **自然语言处理**:北京地区50%的职位要求,深圳45%。
- **数据挖掘**:北京地区40%的职位要求,深圳35%。
- **深度学习**:北京地区35%的职位要求,深圳30%。
- **计算机视觉**:北京地区30%的职位要求,深圳28%。
2. **技能组合要求**
- **北京地区**:45%的职位要求掌握机器学习和自然语言处理;30%的职位要求掌握机器学习和数据挖掘。
- **深圳地区**:40%的职位要求掌握机器学习和自然语言处理;35%的职位要求掌握机器学习和深度学习。
3. **新兴技能需求**
- **北京地区**:15%的职位要求掌握大模型(LLM)技术,10%的职位要求掌握生成式AI(AIGC)。
- **深圳地区**:12%的职位要求掌握大模型(LLM)技术,8%的职位要求掌握生成式AI(AIGC)。### (二)技能与薪资关系
1. **不同技能的薪资溢价**
- **北京地区**:
- **掌握机器学习**:薪资比未掌握高18%。
- **掌握自然语言处理**:薪资比未掌握高15%。
- **掌握深度学习**:薪资比未掌握高12%。
- **掌握大模型(LLM)技术**:薪资比未掌握高25%。
- **深圳地区**:
- **掌握机器学习**:薪资比未掌握高15%。
- **掌握自然语言处理**:薪资比未掌握高12%。
- **掌握深度学习**:薪资比未掌握高10%。
- **掌握大模型(LLM)技术**:薪资比未掌握高20%。
2. **技能组合对薪资的影响**
- **北京地区**:同时掌握机器学习和自然语言处理的AI产品经理,薪资比仅掌握其中之一的高10%。
- **深圳地区**:同时掌握机器学习和深度学习的AI产品经理,薪资比仅掌握其中之一的高8%。
3. **高需求技能的薪资增长趋势**
- **北京地区**:大模型(LLM)技术相关技能薪资年增长率约20%。
- **深圳地区**:生成式AI(AIGC)相关技能薪资年增长率约18%。### (三)技能与职业发展
1. **技能与职位级别关系**
- **北京地区**:高级职位中,90%以上要求掌握机器学习和自然语言处理;中级职位中,70%要求掌握机器学习。
- **深圳地区**:高级职位中,85%以上要求掌握机器学习和自然语言处理;中级职位中,65%要求掌握机器学习。
2. **技能提升对职业发展的影响**
- **北京地区**:掌握深度学习技能的AI产品经理,晋升到高级职位的机会比未掌握的高30%。
- **深圳地区**:掌握大模型(LLM)技术的AI产品经理,晋升到高级职位的机会比未掌握的高25%。
3. **技能学习与职业转型**
- **北京地区**:通过学习自然语言处理技能,从初级职位转型到中级职位的成功率约为40%。
- **深圳地区**:通过学习计算机视觉技能,从初级职位转型到中级职位的成功率约为35%。## 七、区域差异分析
### (一)薪资水平差异
1. **具体薪资对比**
- **北京地区**:平均薪资26K/月,中位数25K/月。
- **深圳地区**:平均薪资24K/月,中位数23K/月。
2. **薪资差异原因**
- **生活成本**:北京生活成本略高于深圳,尤其是住房成本。
- **经济发展水平**:北京作为首都,经济资源和政策支持更丰富。
- **行业竞争**:北京互联网、金融等行业竞争更为激烈,薪资水平相对较高。
3. **薪资差异对人才流动的影响**
- **北京地区**:高薪职位吸引更多外地人才流入,但生活成本高也导致部分人才流向其他城市。
- **深圳地区**:虽然薪资略低,但创业机会多、发展速度快,对年轻人才吸引力强。### (二)需求量差异
1. **职位数量对比**
- **北京地区**:职位数量占全国的35%。
- **深圳地区**:职位数量占全国的30%。
2. **需求量差异原因**
- **产业结构**:北京互联网、金融、教育等行业发达,对AI产品经理需求大。
- **政策支持**:北京对人工智能等高新技术产业有更多政策扶持。
- **人才储备**:北京高校和科研机构众多,人才资源丰富。
3. **需求量变化趋势**
- **北京地区**:随着数字经济推进,AI产品经理需求将持续增长,预计年增长率10%。
- **深圳地区**:在智能硬件、物联网等新兴领域带动下,需求量也将快速增长,预计年增长率12%。### (三)行业分布差异
1. **具体行业分布对比**
- **北京地区**:互联网行业占比40%,金融行业15%,医疗行业12%,教育行业10%。
- **深圳地区**:互联网行业占比35%,智能硬件18%,金融行业12%,电子商务10%。
2. **行业分布差异原因**
- **产业优势**:北京在互联网、教育、医疗等行业有深厚积累;深圳在智能硬件、电子商务等领域更具优势。
- **区域经济发展重点**:北京注重科技创新和服务业发展;深圳以高新技术产业和外向型经济为主。
3. **行业分布差异对人才发展的影响**
- **北京地区**:互联网、金融行业人才竞争激烈,但职业发展路径清晰。
- **深圳地区**:智能硬件、电子商务行业创新机会多,但技术更新快,对人才要求高。
回到小浣熊,问:
分析不同城市、不同经验要求下的薪资分布情况,找出平均薪资、最高薪资和最低薪资。
可以看出,小浣熊贴出了原始数据中具体数字,看着更可靠。
并做了图,但是图有点乱。
上面的prompt是只用了一条问题,当试图将所有问题全部推给小浣熊时,它的回答比较模糊。
总结:相比较kimi,小浣熊比较适合一条一条的问更具体问题,它会引用原始数据并算出需要的值,数据可视化方面更强。
题目3
分析一份美国某超市经营分析数据,看看能分析出什么结论?
它的回复:
从第二组图表中可以得出以下结论:
- 商品销售收入与会员费收入趋势:
- 商品销售收入持续增长,是总收入的主要来源,且每年都有稳定的上升。
- 会员费收入虽然相对较小,但也逐年增加,显示出会员制度对收入的贡献在逐步提升。
- 成本结构趋势:
- 总成本随着业务扩展逐年增加,主要由商品成本和运营费用构成。
- 商品成本占总成本的大部分,但运营费用的增长速度也较快,反映出随着业务规模扩大,运营成本在不断增加。
- 税收成本相对稳定,略有波动,但整体呈上升趋势。 来看,该超市的经营状况良好,收入和利润均稳步增长,会员制度对收入的贡献逐渐显现,同时成本控制也在合理范围内。
继续提问:分析会员增长
可以看到,会员增长率是下降的,并给出了直观的图示。进一步确认了小浣熊的数据可视化,具体问题具体分析方面更强。
对比一下kimi的答案,kimi的答案数字对比多,但不能生成统计图表:
# 美国某超市2010-2018年经营分析报告
## 一、整体经营概况
### (一)收入方面
* **总体收入趋势** :2010 - 2018 年期间,该超市总收入呈现出较为稳定的增长态势,从 2010 年的 779.5 亿美元增长至 2018 年的 1415.7 亿美元,年均复合增长率达到 8.1% 左右,表明超市整体业务规模在不断扩大。
* **收入结构分析** :商品销售收入是超市收入的主要构成部分,2018 年商品销售收入占总收入的比重高达 97.7%。会员费收入虽然占比相对较小,但也是重要组成部分,且呈现逐年增长趋势,2018 年会员费收入为 31.4 亿美元,相较于 2010 年的 16.9 亿美元,增长了近 86%。### (二)成本方面
* **总成本变化** :总成本随着业务规模的扩大而逐年增加,2018 年总成本达到 1384.4 亿美元,是 2010 年 766.5 亿美元的约 1.8 倍。其中,商品成本占总成本的比重较高,2018 年商品成本为 1231.8 亿美元,占总成本的 89.0%。
* **成本控制情况** :从商品毛利的变化来看,2010 - 2018 年商品毛利逐年增加,2018 年商品毛利为 152.5 亿美元,相较于 2010 年的 82.6 亿美元,增长了 84.6%,表明超市在成本控制方面取得了一定成效,能够通过优化采购、库存管理等方式保持商品成本的相对稳定,从而实现毛利的增长。### (三)利润方面
* **净利润增长** :净利润从 2010 年的 13 亿美元增长到 2018 年的 31.3 亿美元,年均复合增长率为 11.2%。其中,2013 年和 2018 年净利润增长较为显著,增长率分别达到 19.3% 和 16.8%。
* **净利率分析** :净利率在 2010 - 2018 年期间整体呈现小幅波动上升趋势,2018 年净利率为 2.21%,相较于 2010 年的 1.67% 提升了 0.54 个百分点,表明超市盈利能力在逐步增强。## 二、经营效率与发展趋势
### (一)会员体系贡献
* **会员规模扩大** :全部会员人数从 2010 年的 5800 万人增长至 2018 年的 9430 万人,年均复合增长率为 6.4%。付费会员人数也呈现稳定增长态势,2018 年付费会员人数为 5167.64 万人,相较于 2010 年的 3160 万人,增长了 63.5%。
* **会员对利润的贡献** :会员费收入的持续增长为超市利润做出了一定贡献,且随着付费会员人数的增加,其在未来有望成为超市利润增长的重要支撑点之一。### (二)毛利率与净利率变化趋势
* **毛利率波动** :毛利率在 2010 - 2018 年期间整体较为稳定,基本维持在 12% - 13% 之间,2018 年毛利率为 12.99%,相较于 2010 年的 12.76% 提升了 0.23 个百分点,反映出超市在商品采购、销售等环节的综合效益保持相对稳定。
* **净利率提升** :净利率从 2010 年的 1.67% 提升至 2018 年的 2.21%,除了成本控制和毛利增长因素外,还得益于运营效率的提升以及规模效应的显现,使得超市在扣除各项费用后,净利润能够实现更快速的增长。### (三)费用率变化
* **费用率整体稳定** :费用率在 2010 - 2018 年期间波动较小,基本维持在 9.6% - 10.3% 之间,2018 年费用率为 9.85%,相较于 2010 年的 10.06% 下降了 0.21 个百分点,表明超市在运营过程中能够较好地控制各项费用支出,保持费用率的相对稳定,为利润的增长创造了有利条件。
## 三、结论与建议
### (一)结论
* 该超市在 2010 - 2018 年期间整体经营状况良好,收入规模不断扩大,利润水平持续提升,会员体系对经营业绩的贡献日益凸显。
* 超市在成本控制、运营效率等方面表现出色,能够通过优化内部管理实现毛利率和净利率的稳步提升,具备较强的市场竞争力和可持续发展能力。### (二)建议
* **持续优化会员体系** :进一步挖掘会员的消费潜力,通过提供更加个性化、多样化的会员服务和优惠活动,提高会员的忠诚度和活跃度,增加会员费收入在总收入中的比重。
* **加强商品采购与供应链管理** :继续深化与供应商的合作,优化采购渠道和库存管理,降低商品采购成本和库存持有成本,进一步提升商品毛利空间。
* **拓展市场份额** :在保持现有经营优势的基础上,积极拓展新的市场区域和消费群体,扩大超市的市场覆盖范围,提升品牌知名度和市场占有率。
任务3--PPT制作,3.18
上次已完成,略。
任务5--综合应用,3.23
拆分
因为数据超过20M的限制,先将数据拆分,以282085行为分界线。
小浣熊的思路如下:
好的,我将根据您提供的电商销售数据,从“人、货、场”三个角度进行分析,并给出相应的结论。首先,我会读取并检查数据,然后逐步进行分析。
步骤1:读取数据并进行初步检查
我将首先读取两个Excel文件中的数据,并检查其结构和内容。
import pandas as pd
# 设置显示所有列
pd.set_option('display.max_columns', None)
# 读取数据
file_path_1 = '/mnt/data/电商数据源_练习1.xlsx'
file_path_2 = '/mnt/data/电商数据源_练习2.xlsx'
data_1 = pd.read_excel(file_path_1)
data_2 = pd.read_excel(file_path_2)
# 打印数据的前几行以检查
print("数据1的前几行:")
print(data_1.head())
print("\n数据2的前几行:")
print(data_2.head())
步骤2:数据分析
1. 人的角度(消费者分析)
- 客户群体分析:分析不同年龄段、性别的消费者购买行为。
- 客户价值分析:通过RFM模型(Recency, Frequency, Monetary)分析客户的消费习惯和价值。
2. 货的角度(商品分析)
- 热销产品分析:识别最受欢迎的产品及其特征。
- 库存周转分析:分析库存周转率,评估库存管理效率。
- 产品评价分析:分析产品评价,了解消费者对产品的满意度。
3. 场的角度(渠道和场景分析)
- 销售渠道分析:比较不同销售渠道的表现,如线上 vs 线下,不同平台的表现等。
- 促销活动分析:评估促销活动对销售的提升效果。
- 地域销售分析:分析不同地区的销售表现,识别高潜力市场。
步骤3:总结与结论
分析第一份拆分了的文档:
在完成上述分析后,我将总结每个角度的关键发现,并给出相应的策略建议。
一个小时过去了,还在解析。
由于数据量太大,将它继续拆分为如下格式,去掉ID号码等无用信息:
返回结果如下:
人(用户分析)结果:
-
年龄分布:
- 平均年龄:33岁
- 年龄范围:16岁至50岁
- 年龄中位数:33岁
- 年龄的标准差:10岁
-
性别比例:
- 男性用户占比:50.58%
- 女性用户占比:49.42%
-
地域分布(前10个地区):
- 广东:61,729人
- 上海:47,492人
- 北京:45,852人
- 湖南:16,820人
- 江苏:16,442人
- 海南:15,937人
- 四川:15,859人
- 天津:15,667人
- 湖北:15,629人
- 重庆:15,556人
货(商品分析)结果:
-
品牌分析(前10个品牌):
- Samsung:49,273次
- Apple:16,449次
- Ava:14,160次
- LG:8,761次
- Tefal:8,163次
- Xiaomi:7,992次
- Philips:6,443次
- Huawei:6,100次
- Polaris:5,871次
- Beko:5,822次
-
类别分析(前10个类别):
- 智能手机:51,942次
- 笔记本电脑:12,371次
- 冰箱:11,471次
- 耳机:10,187次
- 电视:8,395次
- 洗衣机:7,222次
- 吸尘器:7,138次
- 空调:6,750次
- 鼠标:6,649次
- 电热水壶:6,241次
-
价格分析:
- 平均价格:205.32元
- 价格范围:0元至18,328.68元
- 价格中位数:94.88元
- 价格的标准差:293.53元
-
接下来,我将从“场”的角度进行分析。
场(销售场景分析)结果:
- 时间分布(按小时统计销售次数):
- 销售高峰时段:9点至11点,销售量分别为25,186次、24,858次、23,274次。
- 销售低谷时段:凌晨0点至6点,销售量较低,尤其是1点和2点,分别为3,264次和4,596次。
- 地域分布(前10个地区的销售情况):
- 广东:61,729次
- 上海:47,492次
- 北京:45,852次
- 湖南:16,820次
- 江苏:16,442次
- 海南:15,937次
- 四川:15,859次
- 天津:15,667次
- 湖北:15,629次
- 重庆:15,556次
- 人:用户主要集中在广东、上海、北京等经济发达地区,年龄集中在33岁左右,性别比例较为均衡。
- 货:智能手机和笔记本电脑是最受欢迎的商品类别,Samsung和Apple是最受欢迎的品牌,商品价格分布较广,均价为205元。
- 场:销售高峰出现在上午9点至11点,地域上广东、上海、北京的销售量最大。 这些分析结果可以帮助电商企业更好地理解用户行为、优化商品策略和调整营销时间。
分析第二份拆分了的文档:
返回结果如下:
人(用户分析)结果:
-
年龄分布:
- 平均年龄:33.3岁
- 年龄范围:16岁至50岁
- 年龄中位数:33岁
- 年龄的标准差:10.19岁
-
性别比例:
- 男性用户占比:50.25%
- 女性用户占比:49.75%
-
地域分布(前10个地区):
- 广东:61,180人
- 上海:47,864人
- 北京:46,836人
- 海南:18,545人
- 湖南:18,361人
- 四川:17,990人
- 重庆:16,575人
- 浙江:15,844人
- 天津:13,893人
- 江苏:13,774人
接下来,我将从“货”的角度进行分析
货(商品分析)结果:
-
品牌分析(前10个品牌):
- Samsung:46,966次
- Apple:19,635次
- Ava:11,963次
- Tefal:9,793次
- LG:7,935次
- Xiaomi:6,889次
- Philips:5,708次
- Bosch:4,933次
- Polaris:4,859次
- Asus:4,789次
-
类别分析(前10个类别):
- 智能手机:507,555次
- 笔记本电脑:135,70次
- 耳机:99,35次
- 电视:92,69次
- 吸尘器:88,63次
- 冰箱:88,41次
- 洗衣机:73,67次
- 电热水壶:65,14次
- 鼠标:60,41次
- 厨房餐桌:60,18次
-
价格分析:
- 平均价格:211.22元
- 价格范围:0元至104,166.4元
- 价格中位数:81元
- 价格的标准差:315.18元
接下来,我将从“场”的角度进行分析。
场(销售场景分析)结果:
- 时间分布(按小时统计销售次数):
- 销售高峰时段:10点至12点,销售量分别为28,080次、25,708次、23,203次。
- 销售低谷时段:凌晨0点至6点,销售量较低,尤其是0点和1点,分别为782次和1,136次。
- 地域分布(前10个地区的销售情况):
- 广东:61,180次
- 上海:47,864次
- 北京:46,836次
- 海南:18,545次
- 湖南:18,361次
- 四川:17,990次
- 重庆:16,575次
- 浙江:15,844次
- 天津:13,893次
- 江苏:13,774次
总结:
- 人:用户主要集中在广东、上海、北京等经济发达地区,年龄集中在33岁左右,性别比例较为均衡。
- 货:智能手机和笔记本电脑是最受欢迎的商品类别,Samsung和Apple是最受欢迎的品牌,商品价格分布较广,均价为211元。
- 场:销售高峰出现在上午10点至12点,地域上广东、上海、北京的销售量最大。 这些分析结果可以帮助电商企业更好地理解用户行为、优化商品策略和调整营销时间。
合并两份文档,再问一遍:
prompt:将两份报合并起来,分析一下
人(用户分析)结果:
-
年龄分布:
- 平均年龄:33.18岁
- 年龄范围:16岁至50岁
- 年龄中位数:33岁
- 年龄的标准差:10.12岁
-
性别比例:
- 男性用户占比:50.41%
- 女性用户占比:49.59%
-
地域分布(前10个地区):
- 广东:122,909人
- 上海:95,356人
- 北京:92,688人
- 湖南:35,181人
- 海南:34,482人
- 四川:33,849人
- 重庆:32,131人
- 浙江:30,945人
- 江苏:30,216人
- 天津:29,560人
接下来,我将从“货”的角度进行分析。
货(商品分析)结果:
-
品牌分析(前10个品牌):
- Samsung:962,39次
- Apple:360,84次
- Ava:261,23次
- Tefal:179,56次
- LG:166,96次
- Xiaomi:148,81次
- Philips:121,51次
- Polaris:107,30次
- Huawei:107,22次
- Bosch:102,06次
-
类别分析(前10个类别):
- 智能手机:1,026,977次
- 笔记本电脑:259,41次
- 冰箱:203,12次
- 耳机:201,22次
- 电视:176,64次
- 吸尘器:160,01次
- 洗衣机:145,89次
- 电热水壶:127,55次
- 鼠标:126,90次
- 厨房餐桌:112,77次
-
价格分析:
- 平均价格:208.27元
- 价格范围:0元至183,286.8元
- 价格中位数:87.94元
- 价格的标准差:304.56元
接下来,我将从“场”的角度进行分析。
场(销售场景分析)结果:
- 时间分布(按小时统计销售次数):
- 销售高峰时段:9点至11点,销售量分别为52,940次、52,938次、48,982次。
- 销售低谷时段:凌晨0点至6点,销售量较低,尤其是0点和1点,分别为4,646次和4,400次。
- 地域分布(前10个地区的销售情况):
- 广东:122,909次
- 上海:95,356次
- 北京:92,688次
- 湖南:35,181次
- 海南:34,482次
- 四川:33,849次
- 重庆:32,131次
- 浙江:30,945次
- 江苏:30,216次
- 天津:29,560次
最终总结:
- 人:用户主要集中在广东、上海、北京等经济发达地区,年龄集中在33岁左右,性别比例较为均衡。
- 货:智能手机和笔记本电脑是最受欢迎的商品类别,Samsung和Apple是最受欢迎的品牌,商品价格分布较广,均价为208元。
- 场:销售高峰出现在上午9点至11点,地域上广东、上海、北京的销售量最大。 这些综合分析结果可以帮助电商企业更好地理解用户行为、优化商品策略和调整营销时间。