k-means(聚类)的原理

k-means就是k均值聚类,是机器学习的一个算法,是无监督的算法
基本原理:
① 首先要把一组数据分为k类就先随机选k个点作为初始聚类中心
② 计算每个样本点到这k个聚类中心的欧式距离,它们距离哪个中心距离近他就属于哪个类别。
③ 对每一个类别的所有样本点的横纵坐标加和求平均计算出一个坐标点作为新的聚类中心
④ 重复②的操作,然后重复③的操作直到所有样本点所属类别不在变化
⑤ 分类结束

它的优点:算法简单,容易实现
缺点:对数据类型要求为数值型
k值比较难选
不同的初始值导致不同的结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值