k-means就是k均值聚类,是机器学习的一个算法,是无监督的算法
基本原理:
① 首先要把一组数据分为k类就先随机选k个点作为初始聚类中心
② 计算每个样本点到这k个聚类中心的欧式距离,它们距离哪个中心距离近他就属于哪个类别。
③ 对每一个类别的所有样本点的横纵坐标加和求平均计算出一个坐标点作为新的聚类中心
④ 重复②的操作,然后重复③的操作直到所有样本点所属类别不在变化
⑤ 分类结束
它的优点:算法简单,容易实现
缺点:对数据类型要求为数值型
k值比较难选
不同的初始值导致不同的结果