18. 四数之和

18. 四数之和

给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):

0 <= a, b, c, d < n
a、b、c 和 d 互不相同
nums[a] + nums[b] + nums[c] + nums[d] == target
你可以按 任意顺序 返回答案 。

示例 1

输入:nums = [1,0,-1,0,-2,2], target = 0
输出:[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]

示例 2:

输入:nums = [2,2,2,2,2], target = 8
输出:[[2,2,2,2]]

提示:

  • 1 <= nums.length <= 200
  • -10^9 <= nums[i] <= 10^9
  • -10^9 <= target <= 10^9

四数之和,和15.三数之和是一个思路,都是使用双指针法, 基本解法就是在15.三数之和的基础上再套一层for循环。

但是有一些细节需要注意,例如: 不要判断nums[k] > target 就返回了,三数之和 可以通过 nums[i] > 0 就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1]target-10,不能因为-4 > -10而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[i] > target && (nums[i] >=0 || target >= 0)就可以了。

四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n ^ 2),四数之和的时间复杂度是O(n^3) 。

那么一样的道理,五数之和、六数之和等等都采用这种解法。

对于15.三数之和 (opens new window)双指针法就是将原本暴力O(n ^ 3)的解法,降为O(n ^ 2)的解法,四数之和的双指针解法就是将原本暴力O(n ^ 4)的解法,降为O(n^3)的解法。

哈希表的经典题目:454.四数相加II (opens new window),相对于本题简单很多,因为本题是要求在一个集合中找出四个数相加等于target,同时四元组不能重复。

而454.四数相加II是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于本题还是简单了不少!

剪枝部分

二级剪枝的部分:

if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
    break;
}

可以优化为:

if (nums[k] + nums[i] > target && nums[i] >= 0) {
    break;
}

因为只要 nums[k] + nums[i] > target,那么 nums[i] 后面的数都是正数的话,就一定 不符合条件了。

class Solution {
public:
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
        vector<vector<int>> result;
        sort(nums.begin(), nums.end());

        for(int k = 0; k < nums.size(); k++){
            //剪枝处理
            if(nums[k] >= 0 && nums[k] > target) {
                break;
            }
            //对nums[k]进行去重
            if(k > 0 && nums[k] == nums[k - 1]){
                continue;
            }

            for(int i = k + 1; i < nums.size(); i++) {
                //2级剪枝处理
                if(nums[k] + nums[i] > target && nums[k] + nums[i] > 0) {
                    break;
                }
                //对nums[i]进行去重
                if(i > k+1 && nums[i] == nums[i-1]) {
                    continue;
                }
                int left = i + 1;
                int right = nums.size() - 1;
                while(left < right) {
                     // nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
                    if((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
                        right--;
                    }
                    else if((long) nums[k] + nums[i] + nums[left] + nums[right] < target) {
                        left++;
                    }
                    else {
                        result.push_back(vector<int>{nums[k],nums[i],nums[left],nums[right]});

                        //对nums[left]和nums[right]去重
                        while(left < right && nums[left] == nums[left + 1]) {
                            left++;
                        }
                        while(left < right && nums[right] == nums[right - 1]) {
                            right--;
                        }

                        //找到答案时,双指针同时收缩
                        left++;
                        right--;
                    }
                }
            }
        }
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值