18. 四数之和
给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):
0 <= a, b, c, d < n
a、b、c 和 d 互不相同
nums[a] + nums[b] + nums[c] + nums[d] == target
你可以按 任意顺序 返回答案 。
示例 1:
输入:nums = [1,0,-1,0,-2,2], target = 0
输出:[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
示例 2:
输入:nums = [2,2,2,2,2], target = 8
输出:[[2,2,2,2]]
提示:
1 <= nums.length <= 200
-10^9 <= nums[i] <= 10^9
-10^9 <= target <= 10^9
四数之和,和15.三数之和是一个思路,都是使用双指针法, 基本解法就是在15.三数之和的基础上再套一层for循环。
但是有一些细节需要注意,例如: 不要判断nums[k] > target
就返回了,三数之和 可以通过 nums[i] > 0
就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1]
,target
是-10
,不能因为-4 > -10
而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[i] > target && (nums[i] >=0 || target >= 0)
就可以了。
四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n ^ 2),四数之和的时间复杂度是O(n^3) 。
那么一样的道理,五数之和、六数之和等等都采用这种解法。
对于15.三数之和 (opens new window)双指针法就是将原本暴力O(n ^ 3)的解法,降为O(n ^ 2)的解法,四数之和的双指针解法就是将原本暴力O(n ^ 4)的解法,降为O(n^3)的解法。
哈希表的经典题目:454.四数相加II (opens new window),相对于本题简单很多,因为本题是要求在一个集合中找出四个数相加等于target,同时四元组不能重复。
而454.四数相加II是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于本题还是简单了不少!
剪枝部分
二级剪枝的部分:
if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
break;
}
可以优化为:
if (nums[k] + nums[i] > target && nums[i] >= 0) {
break;
}
因为只要 nums[k] + nums[i] > target,那么 nums[i] 后面的数都是正数的话,就一定 不符合条件了。
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for(int k = 0; k < nums.size(); k++){
//剪枝处理
if(nums[k] >= 0 && nums[k] > target) {
break;
}
//对nums[k]进行去重
if(k > 0 && nums[k] == nums[k - 1]){
continue;
}
for(int i = k + 1; i < nums.size(); i++) {
//2级剪枝处理
if(nums[k] + nums[i] > target && nums[k] + nums[i] > 0) {
break;
}
//对nums[i]进行去重
if(i > k+1 && nums[i] == nums[i-1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while(left < right) {
// nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
if((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
right--;
}
else if((long) nums[k] + nums[i] + nums[left] + nums[right] < target) {
left++;
}
else {
result.push_back(vector<int>{nums[k],nums[i],nums[left],nums[right]});
//对nums[left]和nums[right]去重
while(left < right && nums[left] == nums[left + 1]) {
left++;
}
while(left < right && nums[right] == nums[right - 1]) {
right--;
}
//找到答案时,双指针同时收缩
left++;
right--;
}
}
}
}
return result;
}
};