python编译器优化

代码

import torch  
import torch.nn as nn  
  
mw_list = [nn.Linear(5, 2), nn.Linear(5, 2)]  
print( id(mw_list[0]), id(mw_list[1])  )  
mw_list[1] = mw_list[0]  
mw_list[0] = nn.Linear(5, 2)              # 感觉此处有优化 mw_list[0]又重新指向了原先mw_list[1]的地址  
# mw_list[0] = deepcopy( nn.Linear(5, 2)) # 这种方式会重新创建  
# mw_list[0] = deepcopy(myser)  
print( id(mw_list[0]), id(mw_list[1])  )  

执行结果为:
1651583140872 1651583235144
1651583235144 1651583140872

调整代码如下,发现也会存在相同情况

class A():  							# 重新实验
    def __init__(self):  
        self.p = 0  
  
mlst = [A(), A()]  
print( id(mlst[0]), id(mlst[1])  )  
mlst[1] = mlst[0]  
mlst[0] = A()  
print( id(mlst[0]), id(mlst[1])  )  

而在pythontutor执行时,不会出现这种情况

出现上述行为的解释,可能是编译器有某种缓存机制,希望有大佬指教。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值