代码随想录刷题记录(1)| 数组(数组理论基础,704. 二分查找,27. 移除元素)

目录

(一)数组理论基础

(二)二分查找

1. 题目描述

2. 思路

3. 解题过程

4. 相关题目

(1)35. 搜索插入位置 - 力扣(LeetCode)

① 题目描述 

② 解题过程

(2)34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode)

① 题目描述

② 解题过程 

(3)69. x 的平方根 - 力扣(LeetCode)  

① 题目描述

② 解题过程

Ⅰ. 二分查找

 Ⅱ. 牛顿迭代

(4)367. 有效的完全平方数 - 力扣(LeetCode)  

① 题目描述

② 解题过程 

(三)移除元素

1. 题目描述

2. 思路

3. 解题过程

4. 相关题目

(1)26. 删除有序数组中的重复项 - 力扣(LeetCode)

① 题目描述

② 解题过程 

(2)283. 移动零 - 力扣(LeetCode)

① 题目描述

② 解题过程 

(3)844. 比较含退格的字符串 - 力扣(LeetCode)

① 题目描述

② 解题过程 

Ⅰ. 我的思路: 

Ⅱ. 双指针法


(一)数组理论基础

vector和array的区别:vector的底层实现是array,严格来讲vector是容器,不是数组。

补充二维数组初始化和赋值:

vector<vector<int>> count(n, vector<int>(n, 0));
vector<int> temp;
for(int i = 0; i < n; i++){
    temp.push_back(i);
}
for(int i = 0; i < n; i++){
    count.push_back(temp);
}

(二)二分查找

704. 二分查找 - 力扣(LeetCode)

1. 题目描述

        给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1

2. 思路

        前提是数组为有序数组,同时题目还强调数组中无重复元素,当看到题目描述满足如上条件的时候,考虑用二分法。二分法重点要想清楚区间的定义,区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。(可以 mid = left + (right - left) / 2防止溢出)

3. 解题过程

难易程度:简单

标签:数组、二分查找

class Solution {
public:
    int search(vector<int>& nums, int target) {
        // 左闭右开,[left, right)
        int left = 0, right = nums.size();
        // 坚持左闭右开,left < right
        while(left < right){
            int mid = (left + right) / 2;
            if(target == nums[mid]){
                return mid;
            }
            // mid比较过了,左闭右开所以left = mid + 1
            else if(target > nums[mid]){
                left = mid + 1;
            }
            // 同理,mid比较过,right不会取到,所以right = mid
            else{
                right = mid;
            }
        }
        // 全部比较完成,不存在目标值
        return -1;
    }
};

4. 相关题目

(1)35. 搜索插入位置 - 力扣(LeetCode)
① 题目描述 

        给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

        请必须使用时间复杂度为 O(log n) 的算法。

② 解题过程

难易程度:简单

标签:数组、二分查找

class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        int left = 0, right = nums.size();
        while(left < right){
            int mid = (left + right) / 2;
            if(nums[mid] == target){
                return mid;
            }
            else if(nums[mid] > target){
                right = mid;
            }
            else{
                left = mid + 1;
            }
        }
        return left;
    }
};

(2)34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode)
① 题目描述

        给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

        如果数组中不存在目标值 target,返回 [-1, -1]

        你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

② 解题过程 

难易程度:中等

标签:数组、二分查找

注意:输入是否为空、结束时直接使用 left 是否会导致越界

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        int left = 0, right = nums.size();
        vector<int> result(2);
        while(left < right){
            int mid = (left + right) / 2;
            if(nums[mid] >= target){
                right = mid;
            }
            else{
                left = mid + 1;
            }
        }
        // 踩坑,没有考虑target大于数组最大元素导致left越界
        if(left==nums.size() || nums[left] != target){
            result[0] = -1;
            result[1] = -1;
        }
        else{
            result[0] = left;
            // 踩坑,没有考虑最后一个也是相同元素导致left越界
            while(left < nums.size() && nums[left] == target){
                left++;
            }
            result[1] = left - 1;
        }
        return result;
    }
};

更好的办法:两次二分,找左右边界,根据三种情况,写结果。

 

(3)69. x 的平方根 - 力扣(LeetCode)  
① 题目描述

        给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

        由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

        注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

② 解题过程

难易程度:简单

标签:数学、二分查找

Ⅰ. 二分查找

        注意int范围,如果left、right和mid都是int类型,当x在int表示最大边界处,mid*mid会超出int的范围,可以使用强制类型转换(long long)解决,我选择直接定义为long long类型。 

class Solution {
public:
    int mySqrt(int x) {
        long long left = 0, right = x;
        while(left < right){
            long long mid = (left + right) / 2;
            if(mid * mid == x){
                return mid;
            }
            else if(mid * mid > x){
                right = mid;
            }
            else{
                left = mid + 1;
            }
        }
        if(left * left <= x){
            return left;
        }
        return left - 1;
    }
};

 

 Ⅱ. 牛顿迭代

牛顿迭代法是一种可以用来快速求解函数零点的方法。

为了叙述方便,我们用 C 表示待求出平方根的那个整数。显然,C 的平方根就是函数y = f(x)=x^{a}-C的零点。

牛顿迭代法的本质是借助泰勒级数,从初始值开始快速向零点逼近。我们任取一个x_{0}作为初始值,在每一步的迭代中,我们找到函数图像上的点(x_{i},f(x_{i})),过该点作一条斜率为该点导数f'(x_{i})的直线,与横轴的交点记为\left | x_{i+1} \right |\left | x_{i+1} \right |相较于x_{i}而言距离零点更近。在经过多次迭代后,我们就可以得到一个距离零点非常接近的交点。

(4)367. 有效的完全平方数 - 力扣(LeetCode)  
① 题目描述

        给你一个正整数 num 。如果 num 是一个完全平方数,则返回 true ,否则返回 false 。

        完全平方数 是一个可以写成某个整数的平方的整数。换句话说,它可以写成某个整数和自身的乘积。

        不能使用任何内置的库函数,如  sqrt 。

② 解题过程 

难易程度:简单

标签:数学、二分查找

class Solution {
public:
    bool isPerfectSquare(int num) {
        long long i;
        for(i = 1; i * i <= num; i++);
        return (i - 1) * (i - 1) == num;
    }
};

(三)移除元素

27. 移除元素 - 力扣(LeetCode)

1. 题目描述

        给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素。元素的顺序可能发生改变。然后返回 nums 中与 val 不同的元素的数量。

        假设 nums 中不等于 val 的元素数量为 k,要通过此题,您需要执行以下操作:

  • 更改 nums 数组,使 nums 的前 k 个元素包含不等于 val 的元素。nums 的其余元素和 nums 的大小并不重要。
  • 返回 k

2. 思路

双指针法(快慢指针法): 通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。

定义快慢指针

  • 快指针:寻找新数组的元素 ,新数组就是不含有目标元素的数组

  • 慢指针:指向更新 新数组下标的位置

3. 解题过程

难易程度:简单

标签:数组、双指针

我的思路: 

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        // 记录有多少个数值等于val的元素
        int count = 0;
        for(int i = 0; i < nums.size(); i++){
            if(nums[i] == val){
                count++;
            }
            // 遇到不相等的,让前面相等的被这个替换掉
            else{
                nums[i - count] = nums[i];
            }
        }
        return nums.size() - count;
    }
};

快慢指针法:

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int slowIndex = 0;
        for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
            if (val != nums[fastIndex]) {
                nums[slowIndex++] = nums[fastIndex];
            }
        }
        return slowIndex;
    }
};

4. 相关题目

(1)26. 删除有序数组中的重复项 - 力扣(LeetCode)
① 题目描述

        给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。

考虑 nums 的唯一元素的数量为 k ,你需要做以下事情确保你的题解可以被通过:

  • 更改数组 nums ,使 nums 的前 k 个元素包含唯一元素,并按照它们最初在 nums 中出现的顺序排列。nums 的其余元素与 nums 的大小不重要。
  • 返回 k 。

 

② 解题过程 

难易程度:简单

标签: 数组、双指针

class Solution {
public:
    int removeDuplicates(vector<int>& nums) {
        int fast = 1, slow = 1;
        int temp = nums[0];
        for(; fast < nums.size(); fast++){
            if(nums[fast] != temp){
                nums[slow++] = nums[fast];
                temp = nums[fast];
            }
        }
        return slow;
    }
};

(2)283. 移动零 - 力扣(LeetCode)
① 题目描述

        给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。

        请注意 ,必须在不复制数组的情况下原地对数组进行操作。

② 解题过程 

 难易程度:简单

标签:数组、双指针

class Solution {
public:
    void moveZeroes(vector<int>& nums) {
        int slow = 0, fast = 0;
        for(; fast < nums.size(); fast++){
            if(nums[fast] != 0){
                nums[slow++] = nums[fast];
            }
        }
        // 剩下的填上0
        for(; slow < nums.size(); slow++){
            nums[slow] = 0;
        }
    }
};

(3)844. 比较含退格的字符串 - 力扣(LeetCode)
① 题目描述

        给定 s 和 t 两个字符串,当它们分别被输入到空白的文本编辑器后,如果两者相等,返回 true 。# 代表退格字符。

        注意:如果对空文本输入退格字符,文本继续为空。

 

② 解题过程 

难易程度:简单

标签:栈、双指针、字符串、模拟

【string类型支持 pop_back() 弹出最后一个元素】

Ⅰ. 我的思路: 
class Solution {
public:
    // 把字符串的最终结果表示出来
    string change(string s){
        string result_s;
        for(int i = 0; i < s.size(); i++){
            if(s[i] != '#'){
                result_s.push_back(s[i]);
            }
            else{
                if(!result_s.empty()){
                    result_s.pop_back();
                }
            }
        }
        return result_s;
    }

    bool backspaceCompare(string s, string t) {
        string result_s, result_t;
        result_s = change(s);
        result_t = change(t);
        return result_s == result_t;
    }
};

Ⅱ. 双指针法

双指针法:同时从后向前遍历 STi 初始为 S 末尾,j 初始为 T 末尾),记录 # 的数量,模拟消除的操作,如果 # 用完了,就开始比较 S[i]S[j]。如果 S[i]S[j] 不相同返回 false,如果有一个指针(i 或者 j)先走到的字符串头部位置,也返回 false

class Solution {
public:
 bool backspaceCompare(string S, string T) {
     int sSkipNum = 0; // 记录S的#数量
     int tSkipNum = 0; // 记录T的#数量
     int i = S.size() - 1;
     int j = T.size() - 1;
     while (1) {
         while (i >= 0) { // 从后向前,消除S的#
             if (S[i] == '#') sSkipNum++;
             else {
                 if (sSkipNum > 0) sSkipNum--;
                 else break;
             }
             i--;
         }
         while (j >= 0) { // 从后向前,消除T的#
             if (T[j] == '#') tSkipNum++;
             else {
                 if (tSkipNum > 0) tSkipNum--;
                 else break;
             }
             j--;
         }
         // 后半部分#消除完了,接下来比较S[i] != T[j]
         if (i < 0 || j < 0) break; // S 或者T 遍历到头了
         if (S[i] != T[j]) return false;
         i--;j--;
     }
     // 说明S和T同时遍历完毕
     if (i == -1 && j == -1) return true;
     return false;
 }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值