LeetCode高频100题刷题记录之——二叉树最大深度

本文介绍了如何通过递归方式求解二叉树的最大深度,利用二叉树的性质简化计算,时间复杂度为O(n),空间复杂度为O(h)。代码实现中,重点讲解了如何利用`maxDepth`函数计算左子树和右子树的最大深度,并返回两者中的较大值。
摘要由CSDN通过智能技术生成

1 问题描述

找出二叉树的最大深度

2 代码实现

非常简单的一个问题,根据二叉树的结构,我们可以知道二叉树的左右节点(如果有)也各是一棵二叉树,因此,二叉树的深度等于max[deep(left), deep(right)]+1,只要知道这个原理,直接用递归实现就一点难度也没有了。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def maxDepth(self, root: TreeNode) -> int:
        if root is None:
            return 0
        else:
            if root.left is None:
                deep_l = 1
            else:
                deep_l = self.maxDepth(root.left) + 1

            if root.right is None:
                deep_r = 1
            else:
                deep_r = self.maxDepth(root.right) + 1

            return max(deep_l, deep_r)
        

时间复杂度为 O ( n ) O(n) O(n),每个节点只遍历一次;空间复杂度为 O ( h ) O(h) O(h)最差情况下需要调用堆栈次数为树的最大深度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值