数学知识学习之——商空间(Quotient Spaces)

数学知识学习之——商空间(Quotient Spaces)

1 定义

商空间(Quotient Spaces)是线性代数中的知识,本质是定义了一个向量空间中满足特定条件的子空间。

首先,定义向量等价的概念:对于某个域 F \mathbb{F} F V V V F \mathbb{F} F上的一个向量空间,设其存在一个子空间 W W W,即 W ⊆ V W \subseteq V WV,若存在属于 V V V的向量 v 1 , v 2 ∈ V {v_1}, {v_2} \in V v1,v2V,假如二者存在如下关系:
v 1 − v 2 ∈ W {v_1} - {v_2} \in W v1v2W
则认为 v 1 , v 2 {v_1}, {v_2} v1,v2等价,记为 v 1 ∼ v 2 {v_1} \sim {v_2} v1v2。向量等价具有推广性,若${v_1} \sim {v_2} ,{v_2} \sim {v_3} , 则 ,则 {v_1} \sim {v_3} $。

对于属于 V V V的向量 v ∈ V {v} \in V vV,可以自然地定义其等价向量的集合为:
v ‾ = v + W = { v + w : w ∈ W } \overline{v} = v + W = \lbrace v + w : w \in W \rbrace v=v+W={v+w:wW}
称为 v v v等价类。注意,根据向量等价的推广性,所有等价向量的1等价类都是相同的,即当 v 1 ∼ v 2 v_1 \sim v_2 v1v2时, v 1 ‾ = v 2 ‾ \overline{v_1} = \overline{v_2} v1=v2,代表的都是同一个等价类。

向量空间 V V V关于 W W W的所有等价类的集合,称为商空间,记作:
V / W = { v ‾ : v ∈ V } V/W = \{ \overline{v} : v \in V \} V/W={v:vV}

**Example:**对于 V ∈ R 2 V \in \mathbb{R}^2 VR2 W = R ∗ ( 0 , 1 ) W = \mathbb{R} * (0, 1) W=R(0,1),向量 v 0 = ( x 0 , y 0 ) v_0 = (x_0, y_0) v0=(x0,y0)的等价类为 { v : v = ( x 0 , y ) } \{ v: v = (x_0, y) \} {v:v=(x0,y)}

通过下面这张图直观理解商空间的定义,下图中每个子集合都代表了一个等价类,这些等价类的集合即为商空间。有一种说法即是商空间中的每个等价类最终坍缩到了一个点上,实现了对向量空间的降维。

商空间的性质:

等价类满足线性条件(这是一个well define(无歧义的)):
v 1 ‾ + v 2 ‾ = v 1 + v 2 ‾ λ v ‾ = λ v ‾ \overline{v_1} + \overline{v_2} = \overline{v_1 + v_2} \\ \lambda \overline{v} = \overline{\lambda v} v1+v2=v1+v2λv=λv
这两个结论可从定义入手,由 W W W是线性空间证明。

进一步,从向量空间 V V V映射到商空间 V / W V/W V/W的过程记为商映射(quotient map) π \pi π
π : V → V / W = v ↦ v ‾ \pi : V \rightarrow V/W = v \mapsto \overline{v} π:VV/W=vv
此映射既是一个线性映射(linear map),又是一个满射(surjective map,值域中任何元素都有至少有一个变量与之对应),线性映射 ( π ( v 1 + v 2 ) = π ( v 1 ) + π ( v 2 ) , π ( λ v ) = λ π ( v ) ) (\pi (v_1 + v_2) = \pi (v_1) + \pi (v_2), \pi (\lambda v) = \lambda \pi (v)) (π(v1+v2)=π(v1)+π(v2),π(λv)=λπ(v)))可由等价类的线性条件得证,现在证明商映射为满射:

由满射的定义,Kernel π \pi π的值为
在这里插入图片描述

得证。

2 性质

1) 当 V , W V,W V,W均为有限维时,有 dim ⁡ F V / W = dim ⁡ F V − dim ⁡ F W \dim_{\mathbb{F}}V/W = \dim_{\mathbb{F}}V - \dim_{\mathbb{F}}W dimFV/W=dimFVdimFW,这说明什么?假如 V ∈ R r , W ∈ R s V \in \mathbb{R}^r, W \in \mathbb{R}^s VRrWRs,可知V的一组基 B V = ( w 1 , w 2 , . . . , w r ) \Beta_V = (w_1, w_2, ..., w_r) BV=(w1,w2,...,wr),若 B W = ( w 1 , w 2 , . . . , w s ) \Beta_W = (w_1, w_2, ..., w_s) BW=(w1,w2,...,ws),则有 B V / W = ( w s + 1 , w s + 2 , . . . , w r ) \Beta_{V/W} = (w_{s+1}, w_{s+2}, ..., w_r) BV/W=(ws+1,ws+2,...,wr)。这个结论可以直接使用,证明相对而言比较简单,由基的基本定义和商空间的定义即可得到。

2) 假设存在一个线性映射 ψ : V → W ′ \psi: V \rightarrow W' ψ:VW,并且 W ⊆ K e r ψ W \subseteq Ker \psi WKerψ,则称 ψ \psi ψ穿越(factors through)了 π \pi π。穿越的含义是必然存在且仅存在一个线性映射 ϕ : V / W → W ′ \phi: V/W \rightarrow W' ϕ:V/WW,此处的 W ′ W' W W W W无特殊关系,仅作表示。上述三个映射存在以下关系 ψ = ϕ ∘ π \psi = \phi \circ \pi ψ=ϕπ,如下图所示:

证明2)

先证明 ϕ \phi ϕ存在。将 ϕ : V / W → W ′ \phi: V/W \rightarrow W' ϕ:V/WW定义为:
ϕ ( v ˉ ) : = ψ ( v ) \phi(\bar{v}) := \psi(v) ϕ(vˉ):=ψ(v)
v ˉ = v 1 ˉ \bar{v} = \bar{v_1} vˉ=v1ˉ时,显然有 v − v 1 ∈ W v - v_1 \in W vv1W,因此:
ψ ( v ) = ψ ( v 1 + w ) = ψ ( v 1 ) + ψ ( w ) ( w ∈ W ) \psi(v) = \psi(v_1 + w) = \psi(v_1) + \psi(w)(w \in W) ψ(v)=ψ(v1+w)=ψ(v1)+ψ(w)(wW)
由于 ψ \psi ψ是线性映射,上式必然成立,又由于 W ⊆ K e r ψ W \subseteq Ker \psi WKerψ,故 ψ ( w ) = 0 \psi(w) = 0 ψ(w)=0,所以
ψ ( v ) = ψ ( v 1 ) \psi(v) = \psi(v_1) ψ(v)=ψ(v1)
这说明,从商空间 V / W V/W V/W W ′ W' W的映射是成立且well define的,因此肯定有 ψ = ϕ ∘ π \psi = \phi \circ \pi ψ=ϕπ,并且由 ψ \psi ψ是线性映射直接推出 ϕ \phi ϕ是线性映射。

再证明 ϕ \phi ϕ唯一性。假定存在映射 σ \sigma σ也满足上述条件,即 σ ∘ π = ϕ ∘ π \sigma \circ \pi = \phi \circ \pi σπ=ϕπ,对于所有 v ∈ V v \in V vV,都有 σ ( v ˉ ) = ϕ ( v ˉ ) \sigma(\bar{v}) = \phi(\bar{v}) σ(vˉ)=ϕ(vˉ),而 π \pi π是满射的,所以 σ = ϕ \sigma = \phi σ=ϕ

推论:

假设存在两个向量空间 V 1 , V 2 ∈ F V_1, V_2 \in \mathbb{F} V1,V2F,其对应的子空间为 W 1 , W 2 W_1, W_2 W1,W2,各自的商映射为 π 1 : V 1 → V 1 / W 1 ; π 2 : V 2 → V 2 / W 2 { { \pi } _1} : V_1 \rightarrow V_1 / W_1; { { \pi } _2} : V_2 \rightarrow V_2 / W_2 π1:V1V1/W1;π2:V2V2/W2 。如果 V 1 , V 2 V_1, V_2 V1,V2之间存在线性映射关系 T : V 1 → V 2 , T ( W 1 ) ⊆ W 2 T: V_1 \rightarrow V_2, T(W_1) \subseteq W_2 T:V1V2,T(W1)W2,并定义映射 T ~ : V 1 → V 2 / W 2 \tilde{T} : V_1 \rightarrow V_2 / W_2 T~:V1V2/W2,即 v 1 → π 2 ( T ( v 1 ) ) v_1 \rightarrow {\pi}_2(T(v_1)) v1π2(T(v1)),将会有 W 1 ⊆ K e r ( T ~ ) W_1 \subseteq Ker(\tilde{T}) W1Ker(T~),根据性质2),可以推知将会存在一个独一无二的线性映射 T ˉ : V 1 / W 1 → V 2 / W 2 \bar{T}: V_1 / W_1 \rightarrow V_2 / W_2 Tˉ:V1/W1V2/W2,满足 T ˉ ∘ π 1 = T ~ \bar{T} \circ {\pi}_1= \tilde{T} Tˉπ1=T~ T ˉ \bar{T} Tˉ称为诱导映射(induced map),如下图所示:

  • 8
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值