数学知识学习之——商空间(Quotient Spaces)
1 定义
商空间(Quotient Spaces)是线性代数中的知识,本质是定义了一个向量空间中满足特定条件的子空间。
首先,定义向量等价的概念:对于某个域 F \mathbb{F} F, V V V是 F \mathbb{F} F上的一个向量空间,设其存在一个子空间 W W W,即 W ⊆ V W \subseteq V W⊆V,若存在属于 V V V的向量 v 1 , v 2 ∈ V {v_1}, {v_2} \in V v1,v2∈V,假如二者存在如下关系:
v 1 − v 2 ∈ W {v_1} - {v_2} \in W v1−v2∈W
则认为 v 1 , v 2 {v_1}, {v_2} v1,v2等价,记为 v 1 ∼ v 2 {v_1} \sim {v_2} v1∼v2。向量等价具有推广性,若${v_1} \sim {v_2} ,{v_2} \sim {v_3} , 则 ,则 ,则{v_1} \sim {v_3} $。
对于属于 V V V的向量 v ∈ V {v} \in V v∈V,可以自然地定义其等价向量的集合为:
v ‾ = v + W = { v + w : w ∈ W } \overline{v} = v + W = \lbrace v + w : w \in W \rbrace v=v+W={
v+w:w∈W}
称为 v v v的等价类。注意,根据向量等价的推广性,所有等价向量的1等价类都是相同的,即当 v 1 ∼ v 2 v_1 \sim v_2 v1∼v2时, v 1 ‾ = v 2 ‾ \overline{v_1} = \overline{v_2} v1=v2,代表的都是同一个等价类。
向量空间 V V V关于 W W W的所有等价类的集合,称为商空间,记作:
V / W = { v ‾ : v ∈ V } V/W = \{ \overline{v} : v \in V \} V/W={
v:v∈V}
**Example:**对于 V ∈ R 2 V \in \mathbb{R}^2 V∈R2, W = R ∗ ( 0 , 1 ) W = \mathbb{R} * (0, 1) W=R∗(0,