📚 参考书:《数据结构(C语言)》–严蔚敏等编著,清华大学出版社。
📖 邻接表
💻 邻接表是图的一种链式存储结构
,而邻接矩阵是图的一种顺序存储结构(数组)
。
💻 在邻接表中,对图中每个顶点都建立一个单链表,在第i个单链表中的节点表示衣依附于顶点vi的边。
💻 每个节点由3个域组成,如下:
我在学习中为了方便把info权值信息的节点省略掉了:
👀 举例:如下:一个无向图(有向图的邻接表画法类似,会好画一点)
⭐️⭐️⭐️ 重点
🌔若无向图中有n个节点、e条边,则它的邻接表需要n个头结点和2e个表结点。
🌔无论有向图还是无向图,其邻接表不唯一,而邻接矩阵唯一。
🎈 图的邻接表的存储表示
#define MAX_VERTEX_NUM 20
typedef struct ArcNode { //边/弧的节点结构
int adjvex; //该弧所指向的顶点的位置
struct ArcNode *nextarc; //指向下一条弧的指针
InfoType *info; //该弧的相关信息的指针
}ArcNode;
typedef struct VNode { //顶点的节点结构
VertexType data; //顶点信息
ArcNode *firstarc; //指向第一条依附于该顶点的弧的指针
}VNode, AdjList[MAX_VERTEX_NUM];
typedef struct {
AdjList vertices; //一个一维数组,存放顶点
int vexnum, arcnum; //图的当前顶点数和弧数
int kind; //图的种类
}ALGraph;
🎈 而对于邻接表,无向图与有向图的表示各有各自的特点:
🍵 有向图的邻接表表示的特点:
⭐️(n,e)的图有n个头结点和e个弧结点。
⭐️ 顶点 vi 的出度为第i个链表的弧结点数。
⭐️ 求顶点的邻接点容易。
⭐️ 求顶点 vi 的入度不容易求出。
⭐️找出度容易,找入度难。
🍵 无向图的邻接表表示的特点:
🌔(n,e)的图有n个头结点和2e个胡结点。
🌔 顶点 vi 的度为第i个链表的边/弧结点数。
🌔求顶点的邻接点容易。
📖 邻接矩阵与邻接表的区别
🍍
对于任意确定的无向图,邻接矩阵表示唯一,而邻接表表示不唯一。
🍍邻接矩阵空间复杂度为
O(n2),而邻接表的空间复杂度为
O(n+e)。
🍍 用途:邻接矩阵多用于稠密图,邻接表多用于稀疏图。
📖 图的遍历
使图的结点仅被访问一次,叫图的遍历,图的遍历包括深度优先搜索和广度优先搜索,对无向图和有向图都使用,本篇采取无向图的遍历举例。
🏠 深度优先搜索遍历 (DFS
)
深度优先搜索遍历类似于树的先根遍历,当然,在选取所谓的 “根节点” 是随意从图中某个顶点出发的,当然在题中会给出指定的v。
🍺深度优先搜索的基本思想:
🎈 访问指定的某个结点v,将v作为当前结点;
🎈访问当前结点的下一个未被访问过的邻接点
(访问过的顶点就不Care了),并以该邻接点作为当前结点
;
🎈 若遇到死角
(无路可走),则沿着搜索路径回退,直到退到当前结点有未访问过的邻接点的顶点,继续访问
;
🎈 重复上3个步骤,直到所有和当前顶点有路径相通的顶点都访问过,就表示图的深度优先搜索遍历结束。
🌰 让我们来看个例子
如下无向图:
1️⃣ 将V1作为当前结点;
2️⃣ V1的邻接点有V1和V2,访问V1的邻接点V2(或者访问V3);
3️⃣ 同样上步骤,如下图:
4️⃣ 当到V8时,遇到死角(无路可走了,V8没有未被访问过的邻接点了)的时候,进行回退,直到退到V1:
5️⃣ 这时候又从V1的另一个邻接点V3开始访问
显然无向图走遍了,所以此过程为一个递归的过程,要不断的判断进行回退操作,离不开递归的思想。然而此遍历是不唯一的,若是从v1 -> v3出发就该是如下样子:
当然在程序中深度优先搜索遍历又是一个样子,这是与代码写法有关。
⭐️ 算法的时间复杂度为:O(n+e)
🛠 深度优先搜索遍历代码:
Status DFS(ALGraph G,int v);
//深度优先遍历
Status DFS(ALGraph G,int v) {
visited[v] = true;
printf("V%d ",G.vertices[v].data);
ArcNode *p;
p=G.vertices[v].firstarc;
while(p) {
if(!visited[p->adjvex]) {
DFS(G,p->adjvex);
}
p = p->nextarc;
}
}
Status DFS_Traverse(ALGraph G);
Status DFS_Traverse(ALGraph G) {
int i;
for(i=0; i<G.vexnum; i++)
visited[i] = false;
printf("无向图的邻接表DFS(深度优先遍历)结果为:\n");
for(i=0; i<G.vexnum; i++) {
if(!visited[i])
DFS(G,i); //递归入口
}
}
🏠 广度优先搜索遍历 (BFS
)
广度优先搜索遍历类似于树的 “层次遍历”,与深度优先搜索遍历一样,从某个起点开始进行。
🍺广度优先搜索的基本思想:
🎈 访问指定的某个结点v,将v作为当前结点;
🎈访问当前结点的所有未访问过的邻接点
,按照这些顶点被访问的先后次序
依次访问它们所有未访问过的邻接点
;
🎈 若此图中尚有未被访问过的顶点,则另选图中一个未被访问过的顶点作为当前起始点,重复上述步骤。
🌰 让我们来看个例子
采用上面的无向图:
1️⃣ 从V1出发访问它所有未访问过的邻接点
2️⃣ 先访问的是V3,根据次序,从V3开始访问:
3️⃣ 在这里发现V6和V7都没有未访问过的邻接点了,按照思想,从V2开始访问:
4️⃣ 依次从V5开始,V5 - V9 - V8(没有从V4开始访问了,因为从V5开始依次都有一个未访问过的顶点)
在使用广度优先搜索遍历算法时,
需要借助循环辅助队列以存储已被访问过的顶点的标志。
广度优先搜索算法中,每个顶点至多进一次队列,且广度优先搜索和深度优先搜索的时间复杂度都为:O(n+e)
。
🛠 广度优先搜索遍历代码:
Status FirstAdjVex(ALGraph G,int u);
Status FirstAdjVex(ALGraph G,int u) {
ArcNode *p;
int v = LocateVex(G,G.vertices[u].data);
p = G.vertices[v].firstarc;
if(p)
return p->adjvex;
else
return 0;
}
Status NextAdjVex(ALGraph G,int u,int w);
Status NextAdjVex(ALGraph G,int u,int w) {
ArcNode *p;
int v = LocateVex(G,G.vertices[u].data);
if(u>=0 && u<G.vexnum && w>0 && w<G.vexnum) {
p = G.vertices[v].firstarc;
while(p->nextarc) {
if(p->adjvex == w)
return p->nextarc->adjvex;
else
p = p->nextarc;
}
}
return 0;
}
Status BFS(ALGraph G,int v);
//广度优先遍历
Status BFS(ALGraph G,int v) {
SqQueue Q;
InitQueue(Q);
printf("V%d ",G.vertices[v].data);
EnQueue(Q,v);
visited[v]=true;
ArcNode *w;
while(Q.front != Q.rear) {
int u=0;
DeQueue(Q,u);
w = G.vertices[u].firstarc;
while(w != NULL) {
if(!visited[w->adjvex]) {
printf("V%d ",G.vertices[w->adjvex].data);
visited[w->adjvex] = true;
EnQueue(Q,w->adjvex);
}
w = w->nextarc;
}
}
}
Status BFS_Traverse(ALGraph G);
Status BFS_Traverse(ALGraph G) {
int i;
for(i=0; i<G.vexnum; i++)
visited[i] = false;
printf("无向图的邻接表BFS(广度优先遍历)结果为:\n");
for(i=0; i<G.vexnum; i++) {
if(visited[i]==false)
BFS(G,i);
}
}
🛠 全码如下:
#include "stdio.h"
#include "stdlib.h"
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define MAXQSIZE 100
#define MAX_VERTEX_NUM 20
int visited[MAX_VERTEX_NUM]; //访问标志数组
typedef int Status;
typedef int VertexType;
typedef struct { //使用循环辅助队列
VertexType *base;
int front;
int rear;
} SqQueue;
typedef struct ArcNode {
int adjvex; //该弧所指向的顶点的位置
struct ArcNode *nextarc; //指向下一条弧的指针
} ArcNode;
typedef struct VNode {
VertexType data; //顶点信息
ArcNode *firstarc; //指向第一条依附于该顶点的弧的指针
} VNode, AdjList[MAX_VERTEX_NUM];
typedef struct {
AdjList vertices;
int vexnum,arcnum; //图当前顶点数和弧数
} ALGraph;
/*******************循环辅助队列************************/
Status InitQueue(SqQueue &Q);
Status InitQueue(SqQueue &Q) {
Q.base = (VertexType *)malloc(MAXQSIZE*sizeof(VertexType));
if(!Q.base) exit(OVERFLOW);
Q.front = Q.rear = 0;
return OK;
}
Status EnQueue(SqQueue &Q,VertexType e);
Status EnQueue(SqQueue &Q,VertexType e) {
if((Q.rear + 1)%MAXQSIZE == Q.front) return ERROR;
Q.base[Q.rear] = e;
Q.rear = (Q.rear + 1)%MAXQSIZE;
return OK;
}
Status DeQueue(SqQueue &Q,VertexType &e);
Status DeQueue(SqQueue &Q,VertexType &e) {
if(Q.front == Q.rear) return ERROR;
e = Q.base[Q.front];
Q.front = (Q.front + 1)%MAXQSIZE;
return OK;
}
Status QueueEmpty(SqQueue Q);
Status QueueEmpty(SqQueue Q) {
if(Q.front == Q.rear) return TRUE;
else return FALSE;
}
/*****************************************************/
Status LocateVex(ALGraph G,VertexType v);
//定位顶点v在图中的位置
Status LocateVex(ALGraph G,VertexType v) {
int i;
for(i=0; i<G.vexnum; i++) {
if(G.vertices[i].data == v) return i;
}
return -1;
}
Status CreateUDG_AL(ALGraph &G);
//建立无向图的邻接表
Status CreateUDG_AL(ALGraph &G) {
ArcNode *p1,*p2;
int i,k,j,v1,v2;
printf("请输入当前顶点数和弧数(空格隔开):");
scanf("%d %d",&G.vexnum,&G.arcnum);
for(i=0; i<G.vexnum; ++i) {
printf("请输入第%d个的顶点信息:",k+1);
scanf("%d",&G.vertices[i].data);
G.vertices[i].firstarc = NULL;
}
printf("\n");
for(k=0; k<G.arcnum; ++k) {
printf("请输入第%d条边的起点序号和终点序号(空格隔开):",i+1);
scanf("%d %d",&v1,&v2);
i = LocateVex(G,v1);
j = LocateVex(G,v2);
p1 = new ArcNode;
p1->adjvex = j;
p1->nextarc = G.vertices[i].firstarc;
G.vertices[i].firstarc = p1;
p2 = new ArcNode;
p2->adjvex = i;
p2->nextarc = G.vertices[j].firstarc;
G.vertices[j].firstarc = p2;
}
return OK;
}
/**************深度优先遍历*****************/
Status DFS(ALGraph G,int v);
//深度优先遍历
Status DFS(ALGraph G,int v) {
visited[v] = true;
printf("V%d ",G.vertices[v].data);
ArcNode *p;
p=G.vertices[v].firstarc;
while(p) {
if(!visited[p->adjvex]) {
DFS(G,p->adjvex);
}
p = p->nextarc;
}
}
Status DFS_Traverse(ALGraph G);
Status DFS_Traverse(ALGraph G) {
int i;
for(i=0; i<G.vexnum; i++)
visited[i] = false;
printf("无向图的邻接表DFS(深度优先遍历)结果为:\n");
for(i=0; i<G.vexnum; i++) {
if(!visited[i])
DFS(G,i);
}
}
/*******************************************/
/**************广度优先遍历*****************/
Status FirstAdjVex(ALGraph G,int u);
Status FirstAdjVex(ALGraph G,int u) {
ArcNode *p;
int v = LocateVex(G,G.vertices[u].data);
p = G.vertices[v].firstarc;
if(p)
return p->adjvex;
else
return 0;
}
Status NextAdjVex(ALGraph G,int u,int w);
Status NextAdjVex(ALGraph G,int u,int w) {
ArcNode *p;
int v = LocateVex(G,G.vertices[u].data);
if(u>=0 && u<G.vexnum && w>0 && w<G.vexnum) {
p = G.vertices[v].firstarc;
while(p->nextarc) {
if(p->adjvex == w)
return p->nextarc->adjvex;
else
p = p->nextarc;
}
}
return 0;
}
Status BFS(ALGraph G,int v);
//广度优先遍历
Status BFS(ALGraph G,int v) {
SqQueue Q;
InitQueue(Q);
printf("V%d ",G.vertices[v].data);
EnQueue(Q,v);
visited[v]=true;
ArcNode *w;
while(Q.front != Q.rear) {
int u=0;
DeQueue(Q,u);
w = G.vertices[u].firstarc;
while(w != NULL) {
if(!visited[w->adjvex]) {
printf("V%d ",G.vertices[w->adjvex].data);
visited[w->adjvex] = true;
EnQueue(Q,w->adjvex);
}
w = w->nextarc;
}
}
}
Status BFS_Traverse(ALGraph G);
Status BFS_Traverse(ALGraph G) {
int i;
for(i=0; i<G.vexnum; i++)
visited[i] = false;
printf("无向图的邻接表BFS(广度优先遍历)结果为:\n");
for(i=0; i<G.vexnum; i++) {
if(visited[i]==false)
BFS(G,i);
}
}
/*******************************************/
Status PrintUDG_AL(ALGraph G);
//打印图
Status PrintUDG_AL(ALGraph G) {
int i;
int a[G.vexnum];
ArcNode *p;
printf("\n无向图的邻接表顶点为:\n");
for(i=0; i<G.vexnum; i++)
printf("%d ",G.vertices[i].data);
printf("\n无向图的邻接表为:\n");
for(i=0; i<G.vexnum; i++) {
printf("%d[V%d]-->",i,G.vertices[i].data);
p = G.vertices[i].firstarc;
int deg=0; //记录度数
while(p) {
if(p->nextarc != NULL)
printf("[%d]-->",p->adjvex);
else {
printf("[%d]-->NULL",p->adjvex);
}
deg++;
p = p->nextarc;
}
a[i] = deg;
printf("\n");
}
printf("\n");
for(i=0; i<G.vexnum; i++) {
printf("顶点%d的度为:%d\n",G.vertices[i].data,a[i]);
}
return OK;
}
int main(void) {
ALGraph G;
CreateUDG_AL(G);
PrintUDG_AL(G);
printf("\n");
DFS_Traverse(G);
printf("\n");
BFS_Traverse(G);
return 0;
}
实现:
🎓🎓🎓 感谢浏览,下篇见 👀