无向图的邻接表表示求度和两种遍历-----数据结构与算法笔记

📚 参考书:《数据结构(C语言)》–严蔚敏等编著,清华大学出版社。

📖 邻接表

💻 邻接表是图的一种链式存储结构,而邻接矩阵是图的一种顺序存储结构(数组)
💻 在邻接表中,对图中每个顶点都建立一个单链表,在第i个单链表中的节点表示衣依附于顶点vi的边。
💻 每个节点由3个域组成,如下:
我在学习中为了方便把info权值信息的节点省略掉了:
在这里插入图片描述
👀 举例:如下:一个无向图(有向图的邻接表画法类似,会好画一点)
在这里插入图片描述

⭐️⭐️⭐️ 重点
    🌔 若无向图中有n个节点、e条边,则它的邻接表需要n个头结点和2e个表结点。
    🌔 无论有向图还是无向图,其邻接表不唯一,而邻接矩阵唯一。

🎈 图的邻接表的存储表示

#define MAX_VERTEX_NUM 20
typedef struct ArcNode {		//边/弧的节点结构
	int adjvex;		//该弧所指向的顶点的位置
	struct ArcNode *nextarc;	//指向下一条弧的指针
	InfoType *info;	//该弧的相关信息的指针
}ArcNode;

typedef struct VNode {			//顶点的节点结构
	VertexType data;	//顶点信息
	ArcNode *firstarc;	//指向第一条依附于该顶点的弧的指针
}VNode, AdjList[MAX_VERTEX_NUM];

typedef struct {
	AdjList vertices;	//一个一维数组,存放顶点
	int vexnum, arcnum;	//图的当前顶点数和弧数
	int kind;	//图的种类
}ALGraph;

🎈 而对于邻接表,无向图与有向图的表示各有各自的特点

    🍵 有向图的邻接表表示的特点:
       ⭐️ (n,e)的图有n个头结点和e个弧结点。
       ⭐️ 顶点 vi 的出度为第i个链表的弧结点数。
       ⭐️ 求顶点的邻接点容易。
       ⭐️ 求顶点 vi 的入度不容易求出。
       ⭐️ 找出度容易,找入度难。

    🍵 无向图的邻接表表示的特点:
       🌔 (n,e)的图有n个头结点和2e个胡结点。
       🌔 顶点 vi 的度为第i个链表的边/弧结点数。
       🌔 求顶点的邻接点容易。

📖 邻接矩阵与邻接表的区别

🍍 对于任意确定的无向图,邻接矩阵表示唯一,而邻接表表示不唯一。
🍍 邻接矩阵空间复杂度为O(n2),而邻接表的空间复杂度为O(n+e)
🍍 用途:邻接矩阵多用于稠密图,邻接表多用于稀疏图。

📖 图的遍历

使图的结点仅被访问一次,叫图的遍历,图的遍历包括深度优先搜索和广度优先搜索,对无向图和有向图都使用,本篇采取无向图的遍历举例。

🏠 深度优先搜索遍历 (DFS)

深度优先搜索遍历类似于树的先根遍历,当然,在选取所谓的 “根节点” 是随意从图中某个顶点出发的,当然在题中会给出指定的v。

🍺深度优先搜索的基本思想
     🎈 访问指定的某个结点v,将v作为当前结点;
     🎈 访问当前结点的下一个未被访问过的邻接点(访问过的顶点就不Care了),并以该邻接点作为当前结点
     🎈 若遇到死角(无路可走),则沿着搜索路径回退,直到退到当前结点有未访问过的邻接点的顶点,继续访问
     🎈 重复上3个步骤,直到所有和当前顶点有路径相通的顶点都访问过,就表示图的深度优先搜索遍历结束。

🌰 让我们来看个例子
如下无向图:
1️⃣ 将V1作为当前结点;
在这里插入图片描述

2️⃣ V1的邻接点有V1和V2,访问V1的邻接点V2(或者访问V3);
在这里插入图片描述
3️⃣ 同样上步骤,如下图:
在这里插入图片描述
4️⃣ 当到V8时,遇到死角(无路可走了,V8没有未被访问过的邻接点了)的时候,进行回退,直到退到V1:
在这里插入图片描述
5️⃣ 这时候又从V1的另一个邻接点V3开始访问
在这里插入图片描述

显然无向图走遍了,所以此过程为一个递归的过程,要不断的判断进行回退操作,离不开递归的思想。然而此遍历是不唯一的,若是从v1 -> v3出发就该是如下样子:
在这里插入图片描述
当然在程序中深度优先搜索遍历又是一个样子,这是与代码写法有关。

⭐️ 算法的时间复杂度为O(n+e)

🛠 深度优先搜索遍历代码:

Status DFS(ALGraph G,int v);
//深度优先遍历
Status DFS(ALGraph G,int v) {
    visited[v] = true;
    printf("V%d ",G.vertices[v].data);
    ArcNode *p;
    p=G.vertices[v].firstarc;
    while(p) {
        if(!visited[p->adjvex]) {
            DFS(G,p->adjvex);
        }
        p = p->nextarc;
    }
}

Status DFS_Traverse(ALGraph G);
Status DFS_Traverse(ALGraph G) {
    int i;
    for(i=0; i<G.vexnum; i++)
        visited[i] = false;
    printf("无向图的邻接表DFS(深度优先遍历)结果为:\n");
    for(i=0; i<G.vexnum; i++) {
        if(!visited[i])
            DFS(G,i);	//递归入口
    }
}

🏠 广度优先搜索遍历 (BFS)

广度优先搜索遍历类似于树的 “层次遍历”,与深度优先搜索遍历一样,从某个起点开始进行。

🍺广度优先搜索的基本思想
     🎈 访问指定的某个结点v,将v作为当前结点;
     🎈 访问当前结点的所有未访问过的邻接点,按照这些顶点被访问的先后次序依次访问它们所有未访问过的邻接点
     🎈 若此图中尚有未被访问过的顶点,则另选图中一个未被访问过的顶点作为当前起始点,重复上述步骤。

🌰 让我们来看个例子
采用上面的无向图:
1️⃣ 从V1出发访问它所有未访问过的邻接点
在这里插入图片描述
2️⃣ 先访问的是V3,根据次序,从V3开始访问:
在这里插入图片描述
3️⃣ 在这里发现V6和V7都没有未访问过的邻接点了,按照思想,从V2开始访问:
在这里插入图片描述
4️⃣ 依次从V5开始,V5 - V9 - V8(没有从V4开始访问了,因为从V5开始依次都有一个未访问过的顶点)
在这里插入图片描述

在使用广度优先搜索遍历算法时,需要借助循环辅助队列以存储已被访问过的顶点的标志。广度优先搜索算法中,每个顶点至多进一次队列,且广度优先搜索和深度优先搜索的时间复杂度都为:O(n+e)

🛠 广度优先搜索遍历代码:

Status FirstAdjVex(ALGraph G,int u);
Status FirstAdjVex(ALGraph G,int u) {
    ArcNode *p;
    int v = LocateVex(G,G.vertices[u].data);
    p = G.vertices[v].firstarc;
    if(p)
        return p->adjvex;
    else
        return 0;
}

Status NextAdjVex(ALGraph G,int u,int w);
Status NextAdjVex(ALGraph G,int u,int w) {
    ArcNode *p;
    int v = LocateVex(G,G.vertices[u].data);
    if(u>=0 && u<G.vexnum && w>0 && w<G.vexnum) {
        p = G.vertices[v].firstarc;
        while(p->nextarc) {
            if(p->adjvex == w)
                return p->nextarc->adjvex;
            else
                p = p->nextarc;
        }
    }
    return 0;
}

Status BFS(ALGraph G,int v);
//广度优先遍历
Status BFS(ALGraph G,int v) {
    SqQueue Q;
    InitQueue(Q);
    printf("V%d ",G.vertices[v].data);
    EnQueue(Q,v);
    visited[v]=true;
    ArcNode *w;
    while(Q.front != Q.rear) {
        int u=0;
        DeQueue(Q,u);
        w = G.vertices[u].firstarc;
        while(w != NULL) {
            if(!visited[w->adjvex]) {
                printf("V%d ",G.vertices[w->adjvex].data);
                visited[w->adjvex] = true;
                EnQueue(Q,w->adjvex);
            }
            w = w->nextarc;
        }
    }
}

Status BFS_Traverse(ALGraph G);
Status BFS_Traverse(ALGraph G) {
    int i;
    for(i=0; i<G.vexnum; i++)
        visited[i] = false;
    printf("无向图的邻接表BFS(广度优先遍历)结果为:\n");
    for(i=0; i<G.vexnum; i++) {
        if(visited[i]==false)
            BFS(G,i);
    }
}

🛠 全码如下:

#include "stdio.h"
#include "stdlib.h"
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define MAXQSIZE 100
#define MAX_VERTEX_NUM 20

int visited[MAX_VERTEX_NUM];    //访问标志数组

typedef int Status;
typedef int VertexType;
typedef struct {	//使用循环辅助队列
    VertexType *base;
    int front;
    int rear;
} SqQueue;

typedef struct ArcNode {
    int adjvex;     //该弧所指向的顶点的位置
    struct ArcNode  *nextarc;   //指向下一条弧的指针
} ArcNode;

typedef struct VNode {
    VertexType  data;   //顶点信息
    ArcNode *firstarc;  //指向第一条依附于该顶点的弧的指针
} VNode, AdjList[MAX_VERTEX_NUM];

typedef struct {
    AdjList vertices;
    int vexnum,arcnum;  //图当前顶点数和弧数
} ALGraph;

/*******************循环辅助队列************************/
Status InitQueue(SqQueue &Q);
Status InitQueue(SqQueue &Q) {
    Q.base = (VertexType *)malloc(MAXQSIZE*sizeof(VertexType));
    if(!Q.base) exit(OVERFLOW);
    Q.front = Q.rear = 0;
    return OK;
}

Status EnQueue(SqQueue &Q,VertexType e);
Status EnQueue(SqQueue &Q,VertexType e) {
    if((Q.rear + 1)%MAXQSIZE == Q.front) return ERROR;
    Q.base[Q.rear] = e;
    Q.rear = (Q.rear + 1)%MAXQSIZE;
    return OK;
}

Status DeQueue(SqQueue &Q,VertexType &e);
Status DeQueue(SqQueue &Q,VertexType &e) {
    if(Q.front == Q.rear) return ERROR;
    e = Q.base[Q.front];
    Q.front = (Q.front + 1)%MAXQSIZE;
    return OK;
}

Status QueueEmpty(SqQueue Q);
Status QueueEmpty(SqQueue Q) {
    if(Q.front == Q.rear) return TRUE;
    else return FALSE;
}
/*****************************************************/

Status LocateVex(ALGraph G,VertexType v);
//定位顶点v在图中的位置
Status LocateVex(ALGraph G,VertexType v) {
    int i;
    for(i=0; i<G.vexnum; i++) {
        if(G.vertices[i].data == v) return i;
    }
    return -1;
}

Status CreateUDG_AL(ALGraph &G);
//建立无向图的邻接表
Status CreateUDG_AL(ALGraph &G) {
    ArcNode *p1,*p2;
    int i,k,j,v1,v2;
    printf("请输入当前顶点数和弧数(空格隔开):");
    scanf("%d %d",&G.vexnum,&G.arcnum);
    for(i=0; i<G.vexnum; ++i) {
        printf("请输入第%d个的顶点信息:",k+1);
        scanf("%d",&G.vertices[i].data);
        G.vertices[i].firstarc = NULL;
    }
    printf("\n");
    for(k=0; k<G.arcnum; ++k) {
        printf("请输入第%d条边的起点序号和终点序号(空格隔开):",i+1);
        scanf("%d %d",&v1,&v2);
        i = LocateVex(G,v1);
        j = LocateVex(G,v2);

        p1 = new ArcNode;
        p1->adjvex = j;
        p1->nextarc = G.vertices[i].firstarc;
        G.vertices[i].firstarc = p1;

        p2 = new ArcNode;
        p2->adjvex = i;
        p2->nextarc = G.vertices[j].firstarc;
        G.vertices[j].firstarc = p2;
    }
    return OK;
}

/**************深度优先遍历*****************/
Status DFS(ALGraph G,int v);
//深度优先遍历
Status DFS(ALGraph G,int v) {
    visited[v] = true;
    printf("V%d ",G.vertices[v].data);
    ArcNode *p;
    p=G.vertices[v].firstarc;
    while(p) {
        if(!visited[p->adjvex]) {
            DFS(G,p->adjvex);
        }
        p = p->nextarc;
    }
}

Status DFS_Traverse(ALGraph G);
Status DFS_Traverse(ALGraph G) {
    int i;
    for(i=0; i<G.vexnum; i++)
        visited[i] = false;
    printf("无向图的邻接表DFS(深度优先遍历)结果为:\n");
    for(i=0; i<G.vexnum; i++) {
        if(!visited[i])
            DFS(G,i);
    }
}
/*******************************************/

/**************广度优先遍历*****************/
Status FirstAdjVex(ALGraph G,int u);
Status FirstAdjVex(ALGraph G,int u) {
    ArcNode *p;
    int v = LocateVex(G,G.vertices[u].data);
    p = G.vertices[v].firstarc;
    if(p)
        return p->adjvex;
    else
        return 0;
}

Status NextAdjVex(ALGraph G,int u,int w);
Status NextAdjVex(ALGraph G,int u,int w) {
    ArcNode *p;
    int v = LocateVex(G,G.vertices[u].data);
    if(u>=0 && u<G.vexnum && w>0 && w<G.vexnum) {
        p = G.vertices[v].firstarc;
        while(p->nextarc) {
            if(p->adjvex == w)
                return p->nextarc->adjvex;
            else
                p = p->nextarc;
        }
    }
    return 0;
}

Status BFS(ALGraph G,int v);
//广度优先遍历
Status BFS(ALGraph G,int v) {
    SqQueue Q;
    InitQueue(Q);
    printf("V%d ",G.vertices[v].data);
    EnQueue(Q,v);
    visited[v]=true;
    ArcNode *w;
    while(Q.front != Q.rear) {
        int u=0;
        DeQueue(Q,u);
        w = G.vertices[u].firstarc;
        while(w != NULL) {
            if(!visited[w->adjvex]) {
                printf("V%d ",G.vertices[w->adjvex].data);
                visited[w->adjvex] = true;
                EnQueue(Q,w->adjvex);
            }
            w = w->nextarc;
        }
    }
}

Status BFS_Traverse(ALGraph G);
Status BFS_Traverse(ALGraph G) {
    int i;
    for(i=0; i<G.vexnum; i++)
        visited[i] = false;
    printf("无向图的邻接表BFS(广度优先遍历)结果为:\n");
    for(i=0; i<G.vexnum; i++) {
        if(visited[i]==false)
            BFS(G,i);
    }
}
/*******************************************/

Status PrintUDG_AL(ALGraph G);
//打印图
Status PrintUDG_AL(ALGraph G) {
    int i;
    int a[G.vexnum];
    ArcNode *p;
    printf("\n无向图的邻接表顶点为:\n");
    for(i=0; i<G.vexnum; i++)
        printf("%d ",G.vertices[i].data);
    printf("\n无向图的邻接表为:\n");
    for(i=0; i<G.vexnum; i++) {
        printf("%d[V%d]-->",i,G.vertices[i].data);
        p = G.vertices[i].firstarc;
        int deg=0;  //记录度数
        while(p) {
            if(p->nextarc != NULL)
                printf("[%d]-->",p->adjvex);
            else {
                printf("[%d]-->NULL",p->adjvex);
            }
            deg++;
            p = p->nextarc;
        }
        a[i] = deg;
        printf("\n");
    }
    printf("\n");
    for(i=0; i<G.vexnum; i++) {
        printf("顶点%d的度为:%d\n",G.vertices[i].data,a[i]);
    }
    return OK;
}

int main(void) {
    ALGraph G;
    CreateUDG_AL(G);
    PrintUDG_AL(G);
    printf("\n");
    DFS_Traverse(G);
    printf("\n");
    BFS_Traverse(G);
    return 0;
}

实现:
在这里插入图片描述

🎓🎓🎓 感谢浏览,下篇见 👀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏日的清晨

谢谢,只求点赞哟

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值