边的染色
题目描述
小团有一张n个点,m条边的无向图G,有些边上已经被标记了0或1,表示它的边权。
现在你需要给剩下的边标记边权为0或1,求有几种标记的方式满足:
对于G中任意一个环,里面所有边的边权的异或值为0。
环的定义如下:
对于任意k(k≥2)个点{a1,a2,…,ak},若对于所有的i<k满足ai与ai+1之间有边,且a1=ak成立,则这k个点构成一个环。
1≤n≤100,000
0≤m≤min(n*(n-1)/2, 100000)
思路:此题的巧妙之处在于将边权赋值为0或1,转换成连接边的两点赋值0或1的异或值。
1、首先,在一个n个点的环中,这n条边的异或和 化为这n个点的异或和时,每个点被异或两次,所以不管怎么赋值最后的异或和都是0。而点的赋值方式是2^n种,所以边的赋值方式是点赋值方式的一半2 ^ (n-1),因为对于两个点的四种组合方式得到的边权只用两种,例如:0 ^ 0 = 0 , 1 ^ 1 = 0, 0 ^ 1 = 1, 1 ^ 0 = 1; 所以是一半。
2、其次,若在这n个点的环中,假设有1个联通块已经被赋过边权了,且这个连通块的大小为k,那么这个环的方案数就应该为 2 ^(n-1)/2 ^(k-1) ,设这个环中还没有被赋值的边为m,此时其实就是2 ^ m;
3、再深入分析,环的情况可以适用到一个联通图中,因为在环中的边的赋值其实已经相当于没有限制了,所以将不同连通块的2^m相乘起来就是答案。
4、接下来也是关键一步,判断原始边权值已经不满足环中异或和为0。接下来所操作的都是在已经赋过值的边所组成的连通块内,在这个连通块内,当一个点的权值确定时,其他的点就都确定了,所以我们便可以确定是否矛盾。
#include<bits/stdc++.h>
using namespace std;
const int mod = 998244353;
const int N = 1e5+7;
int h[N],e[N*2],ne[N*2],w[N*2],idx;
int p[N],cnt;
int color[N],vis[N];
void add(int a,int b,int c){
e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx++;
}
int find(int x){
if(p[x]!=x) p[x] = find(p[x]);
return p[x];
}
void dfs(int x,int col) //判断原始赋值是否矛盾 ,染色法
{
color[x] = col;
for(int i= h[x];~i;i=ne[i]){
int j = e[i];
if(w[i]==-1) continue; //只判断已经赋过值的边是否存在矛盾
if(color[j]==-1) dfs(j,col^w[i]);
else if(color[j]^col!=w[i]){
puts("0"); exit(0);
}
}
}
void dfs2(int x) //每个连通块(已经被赋值)大小
{
vis[x] = 1;
cnt++;
for(int i=h[x];~i;i=ne[i]){
int j = e[i];
if(w[i]==-1) continue;
if(!vis[j]) dfs2(j);
}
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
memset(h,-1,sizeof h);
for(int i=1;i<=n;i++) p[i] = i;
int k = n;
for(int i=1;i<=m;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c),add(b,a,c);
if(find(a)!=find(b)) p[find(a)] = find(b),k--; //原图连通块数量
}
k = n-k; //总的方案数
for(int i=1;i<=n;i++){
cnt=0;
if(!vis[i]){
dfs2(i);
k -= (cnt-1); //除去原本被赋值的边的方案数
}
}
memset(color,-1,sizeof color);
for(int i=1;i<=n;i++){ //判断矛盾
if(color[i]==-1) dfs(i,0);
}
long long ans=1;
for(int i=1;i<=k;i++) ans = ans*2%mod;
printf("%lld\n",ans);
return 0;
}