Removal (线性DP)

本文探讨了在给定长度为n的整数序列中,通过删除m个元素后能得到多少种不同子序列的问题。利用计数DP算法,定义状态dp[i][j]表示前i个数中删除j个数的不同子序列数量。文章详细分析了状态转移方程,并通过减去重复状态确保计数正确。
摘要由CSDN通过智能技术生成

Removal

题目描述 :
Bobo has a sequence of integers s1, s2, …, sn where 1 ≤ si ≤ k.
Find out the number of distinct sequences modulo (109+7) after removing exactly m elements.
备注 :
1 ≤ n ≤ 105
1 ≤ m ≤ min{n - 1, 10}
1 ≤ k ≤ 10
1 ≤ si ≤ k
The sum of n does not exceed 106.

题意: 长度为n序列si,1 ≤ si ≤ k,1 ≤ k ≤ 10,选择m个数删去后,能得到多少不同的子序列。
思路: 子序列问题,考虑计数DP;
设dp[ i ][ j ] :前 i 个数里删去 j 个数得到的不同子序列数目;
首先我们考虑如果允许重复的子序列存在状态转移:
dp[ i ][ j ] = dp[i-1][j-1] + dp[i-1][j] ;(删去第i个和不删去第i个)
若按上述状态转移,我们分析重复是怎么产生的:5 1 2 3 4 1 ,当前两位删去0个得到:5 1;前六位删去四个(1 2 3 4或2 3 4 1)得到:5 1 。发现会多把5 1 序列多计数一次,即:dp[6][ j ] = dp[2-1][ j-4] ;多计算的状态就是 dp[2-1][j-4] (假设删除的是2 3 4 1,保留第一个1);
所以我们只要找到在 i 之前出现的等于a[i] 的位置即可减去重复的状态:
dp[ i ][ j ] -= dp[k-1][ j - (i - k)] ,(s[i] == s[k] && k < i && j >= i - k);

即可得方案数:dp[n][m]

#include<bits/stdc++.h>

using namespace std;
const int N = 1e5+7;
const int mod = 1e9+7;

int a[N],last[N][11];
int dp[N][11];

int main()
{
	int n,m,k;
	while(cin>>n>>m>>k){
		for(int i=1;i<=n;i++) cin>>a[i];
		
		for(int i=0;i<=n;i++)
		for(int j=0;j<=10;j++) dp[i][j] = last[i][j] = 0;  //多组初始化
		
		for(int i=1;i<=n;i++){		//上次出现的位置 
			for(int j=1;j<=k;j++)
			last[i+1][j] = last[i][j];
			last[i+1][a[i]] = i;
		}
		for(int i=0;i<=n;i++) dp[i][0] = 1;
		for(int i=1;i<=n;i++){
			for(int j=1;j<=m;j++){
				dp[i][j] = (dp[i-1][j] + dp[i-1][j-1])%mod;
				int pos = last[i][a[i]];
				int num = j-(i-pos);  //把两个重复的数字之间的数都删去,后还剩num个要删 
				if(pos>=1 && num>=0 ){
					dp[i][j] =(dp[i][j] - dp[pos-1][num]+mod)%mod;  //此时dp[pos-1][num]状态下的字符串长度与dp[i-1][j]相等 
				}
			}
			//last[a[i]] = i;  //也可以在这动态维护前一个相同的数出现的位置
		}
		cout<<dp[n][m]<<endl;
	}
	return 0;
 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值