Removal
题目描述 :
Bobo has a sequence of integers s1, s2, …, sn where 1 ≤ si ≤ k.
Find out the number of distinct sequences modulo (109+7) after removing exactly m elements.
备注 :
1 ≤ n ≤ 105
1 ≤ m ≤ min{n - 1, 10}
1 ≤ k ≤ 10
1 ≤ si ≤ k
The sum of n does not exceed 106.
题意: 长度为n序列si,1 ≤ si ≤ k,1 ≤ k ≤ 10,选择m个数删去后,能得到多少不同的子序列。
思路: 子序列问题,考虑计数DP;
设dp[ i ][ j ] :前 i 个数里删去 j 个数得到的不同子序列数目;
首先我们考虑如果允许重复的子序列存在状态转移:
dp[ i ][ j ] = dp[i-1][j-1] + dp[i-1][j] ;(删去第i个和不删去第i个)
若按上述状态转移,我们分析重复是怎么产生的:5 1 2 3 4 1 ,当前两位删去0个得到:5 1;前六位删去四个(1 2 3 4或2 3 4 1)得到:5 1 。发现会多把5 1 序列多计数一次,即:dp[6][ j ] = dp[2-1][ j-4] ;多计算的状态就是 dp[2-1][j-4] (假设删除的是2 3 4 1,保留第一个1);
所以我们只要找到在 i 之前出现的等于a[i] 的位置即可减去重复的状态:
dp[ i ][ j ] -= dp[k-1][ j - (i - k)] ,(s[i] == s[k] && k < i && j >= i - k);
即可得方案数:dp[n][m]
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+7;
const int mod = 1e9+7;
int a[N],last[N][11];
int dp[N][11];
int main()
{
int n,m,k;
while(cin>>n>>m>>k){
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=0;i<=n;i++)
for(int j=0;j<=10;j++) dp[i][j] = last[i][j] = 0; //多组初始化
for(int i=1;i<=n;i++){ //上次出现的位置
for(int j=1;j<=k;j++)
last[i+1][j] = last[i][j];
last[i+1][a[i]] = i;
}
for(int i=0;i<=n;i++) dp[i][0] = 1;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
dp[i][j] = (dp[i-1][j] + dp[i-1][j-1])%mod;
int pos = last[i][a[i]];
int num = j-(i-pos); //把两个重复的数字之间的数都删去,后还剩num个要删
if(pos>=1 && num>=0 ){
dp[i][j] =(dp[i][j] - dp[pos-1][num]+mod)%mod; //此时dp[pos-1][num]状态下的字符串长度与dp[i-1][j]相等
}
}
//last[a[i]] = i; //也可以在这动态维护前一个相同的数出现的位置
}
cout<<dp[n][m]<<endl;
}
return 0;
}