1.引言
数据管理(Data Management) 是为了 交付、 控制、 保护 并 提升 数据和信息资产的 价值 , 在其整个生命周期中制订 计划、 制度、 规程和实践 活动, 并 执行 和 监督 的过程。
数据管理专业人员(Data Management Professional) 是指 从事数据管理各方面的工作(从数据全生命周期的技术管理工作, 到确保数据的合理利用及发挥作用) , 并通过其工作来实现组织战略目标的任何人员。
数据管理活动的范围广泛, 包括从对如何利用数据的战略价值做出一致性决定, 到数据库的技术部署和性能提升等所有方面。 因此, 数据管理需要技术的和非技术的双重技能。 管理数据的责任必须由业务人员和信息技术人员两类角色共同承担, 这两个领域的人员需要相互协作,确保组织拥有满足战略需求的高质量数据。
1.1 业务驱动因素
信息和知识是竞争优势的关键。如果不能像管理资本一样管理好数据, 就会浪费和失去机会。正如有效管理财务和物理资产使组织能够从这些资产中获取价值一样, 数据管理的主要驱动力也是使组织能够从其数据资产中获取价值。
1.2 目标
组织管理数据的目标包括:
1) 理解并支撑企业及其利益相关方(包括客户、 员工和业务合作伙伴等) 的信息需求得到满足。
2) 获取、 存储、 保护数据和确保数据资产的完整性。
3) 确保数据和信息的质量。
4) 确保利益相关方的数据隐私和保密性。
5) 防止数据和信息未经授权或被不当访问、 操作及使用。
6) 确保数据能有效地服务于企业增值的目标。
2.基本概念
2.1 数据
在信息技术中, 数据也被理解为以数字形式存储的信息(尽管数据不仅限于已数字化的信息, 而且与数据库中的数据相同, 数据管理的原则也适用于纸面上的数据)。
大多数人认为数据代表事实,数据是这个世界中与某个事实结合在一起的一种真实表达。但“事实”并不总是简单或直接的。数据是一种表示方法,它代表的是除自身以外的事物(Chisholm,2010)。数据既是对其所代表对象的解释,也是必须解释的对象(Sebastian Coleman,2013)。这是人们需要语境或上下文使数据有意义的另一种说法。语境可被视为数据的表示系统,该系统包括一个公共词汇表和一系列组件之间的关系,如果知道这样一个系统的约定,就可解释其中的数据。这些数据通常记录在一种特殊类型的数据——元数据。
可是,由于人们经常在如何表达概念时会做出不同选择,他们创造表示相同概念的不同方式。即使在一个组织中,也常有同一概念的多种表示方法。因此,需要对数据架构、建模、治理、管理制度以及元数据和数据质量进行管理, 所有这些都有助于人们理解和使用数据。
2.2 数据和信息
数据被称为“信息的原材料”,而信息则被称为“在上下文语境中的数据”。金字塔模型用于分层描述位于底层的数据、信息、知识与位于顶层的智慧之间的关系。但是对于数据管理也有异议:
1)基于数据是简单存在的假设。但数据并不是简单存在,而是要被创造出来的。
2)人们将数据到智慧描述为一个自下而上的逐级序列,但未认识 到创建数据首先需要知识。
3)金字塔模型意味着数据和信息是分开的,但事实上这两个概念 是相互交织并相互依赖的。数据是信息的一种形式,信息也是数据的一种形式。
组织内部在数据和信息之间画一条线,可能有助于清晰地沟通不同利益相关方对不同用途的需求和期望(如“这是上季度的销售报告”)(信息)。它基于数据仓库中的数据(数据)。下一季度,这些结果(数据)将用于生成季度绩效指标(信息)。数据管理的一个核心原则: 数据和信息都需要被管理;如果再将两者的使用和客户的需求结合在一起进行管理,则两者应具有更高的质量。
2.3 数据是一种组织资产
资产是一种经济资源,能被拥有或控制、持有或产生价值。如今的组织依靠数据资产做出更高效的决定,并拥有更高效的运营。企业运用数据去理解客户,创造出新的产品和服务,并通过削减成本和控制风险的手段来提高运营效率。政府代理机构、教育机构以及非营利组织也需要高质量的数据来指导他们的运营、战术和战略活动。随着大量组织越来越依赖数据,可以更清楚地确定数据资产的价值。数据驱动包括认识到必须通过业务领导和技术专业知识的合作关系,以专业的规则高效地管理数据。
2.4 数据管理原则
数据管理和其他形式的资产管理具有共同的特性,如图1-1所示。 它涉及了解一个组织拥有什么数据以及可以用它完成什么,然后确定利用数据资产来实现组织目标的最佳方式。
- 数据是有独特属性的资产
- 相比于其他资产(金融和实物资产), 数据在使用的过程中不会产生损耗。
- 数据的价值可以用经济术语来表示
- 形成评估数据价值的标准
- 管理数据意味着对数据的质量管理
- 了解利益相关方对质量的要求,并根据这些要求度量数据。
- 管理数据需要元数据
- 用于管理和如何使用数据的数据都称为元数据。通俗来说就是描述数据的数据。
- 数据管理需要规划
- 规划:技术架构和业务蓝图
- 数据管理须驱动信息技术决策
- 数据管理与信息技术服务紧密结合
- 数据管理是跨职能的工作
- 跨业务部门, 各部门相互协作
- 数据管理需要企业级视角
- 数据管理应被有效地应用于整个企业
- 数据管理需要多角度思考
- 数据管理方式需要根据数据的变化而变化
- 数据管理需要全生命周期的管理,不同类型数据有不同的生命周期特征
- 针对不同的管理需求, 数据的生命周期也不同
- 数据管理需要纳入与数据相关的风险
- 数据可能存在丢失、被盗或者误用的风险
- 有效的数据管理需要领导层承担责任
- 数据管理需要领导层的愿景和使命
2.5 数据管理的挑战
由于数据管理具有源自数据本身属性的独特特性,因此遵循这些原则也带来了很多挑战。
-
数据与其他资产的区别
- 实物资产是看得见、摸得着、可以移动的,在同一时刻只能被放置在一个地方。金融资产必须在资产负债表上记账。
- 数据的价值经常随着时间的推移而变化,但它是持久的、不会磨损的。
- 数据很容易被复制和传送,但它一旦被丢失或销毁, 就不容易重新产生了。
- 数据是动态的,可以被用于多种目的。
- 数据价值的测量是一个巨大的挑战, 如何定义标准就显得尤为重要。
-
数据价值
- 价值(Value)是一件事物的成本和从中获得利益的差额。
- 数据的价值计算没有统一的标准, 每个组织的数据都是唯一的, 在不同的组织评估数据价值需要计算在组 织内部持续付出的一般性成本和各类收益。
- 在一个组织中,某些类型的数据可能会随着时间的推移而具有一致的价值。例如: 获取可靠的客户信息。随着越来越多与客户活动相关的数据得以积累,客户信息随着时间的推移变得更有价值。
- 数据评估过程也可以作为变更管理的一种手段。
-
数据质量
- 确保高质量的数据是数据管理的核心。
- 低质量数据的成本主要来源于:
- 1)报废和返工。
- 2)解决方法和隐藏的纠正过程。
- 3)组织效率低下或生产力低下。
- 4)组织冲突。
- 5)工作满意度低。
- 6)客户不满意。
- 7)机会成本,包括无法创新。
- 8)合规成本或罚款。
- 9)声誉成本。
- 高质量数据的作用包括:
- 1)改善客户体验。
- 2)提高生产力。
- 3)降低风险。
- 4)快速响应商机。
- 5)增加收入。
- 6)洞察客户、产品、流程和商机,获得竞争优势。
-
数据优化计划
- 要认识到组织可以控制如何获取和创建数据, 如果把数据视作创造的一种产品,他们将要通过它的生命周期做出更好的决定。
- 决策的确定涉及以下几个方面:
- 1)数据也许被视为独立于业务流程存在。
- 2)业务流程与支持它们的技术之间的关系。
- 3)系统的设计和架构及其所生成和存储的数据。
- 4)使用数据的方式可能被用于推动组织战略。
- 组织在执行战略时必须平衡长期目标和短期目标。只有明确权衡,才会获得有效决策。
-
元数据和数据管理
- 元数据描述了一个组织拥有什么数据,它代表什么、如何被分类、它来自哪里、在组织之内如何移动、如何在使用中演进、谁可以使用它以及是否为高质量数据。
- 数据是抽象的,上下文语境的定义和其他描述让数据清晰明确。
- 元数据是以数据形式构成的,因此需要进行严格管理。元数据管理是全面改进数据管理的起点。
-
数据管理是跨职能的工作
- 在数据生命周期中,不同阶段由不同团队进行不同的管理。
- 让具备这一系列技能和观点的人认识到各部分是如何结合在一起的,从而使他们能够协作并朝着共同的目标努力。
-
数据管理需要多角度思考
- 数据是组织中的“横向领域”之一,它跨越不同垂直领域,如销售、营销和运营。
- 数据治理变得越来越重要的一个原因是帮助组织跨垂直领域做出数据决策。
-
数据生命周期
-
从概念上讲,数据生命周期很容易描述(图1-2)。它包括创建或获取、移动、转换和存储数据并使其得以维护和共享的过程,使用数据的过程,以及处理数据的过程。
- 1)创建和使用是数据生命周期中的关键点。
- 2)数据质量管理必须贯穿整个数据生命周期。
- 3)元数据质量管理必须贯穿整个数据生命周期。
- 4)数据管理还包括确保数据安全,并降低与数据相关的风险。
- 5)数据管理工作应聚焦于关键数据。
-
在数据的整个生命周期中,可以清理、转换、合并、增强或聚合数据。
-
数据血缘是从起点移动到使用点的路径,也称为数据链。
-
了解数据的生命周期和血缘对于推动数据管理有着至关重要的作用。
-
-
不同种类的数据
- 数据类型分类: 交易数据、参考数据、主数据、元数据 或者 类别数据、源头数据、事件数据、详细交易数据。
- 数据内容: 数据域、主题域。
-
数据和风险
- 数据不仅代表价值,也代表风险。不准确、不完整或过时的低质量数据,因为其信息不正确明显代表风险。
- 数据的风险在于,它可能被误解和误用。
-
数据管理和技术
- 成功的数据管理需要对技术做出正确的决策,但管理技术与管理数据不同。
- 组织需要了解技术对数据的影响,以防止技术诱惑推动他们对数据的决策。
- 与业务战略一致的数据应该推动有关技术的决策。
-
高效的数据管理需要领导力和承诺
- 倡导首席数据官(CDO)的作用源于认识到管理数据会带来独特的挑战,成功的数据管理必须由业务驱动,而不是由IT驱动。
2.6 数据管理战略
数据战略应该包括使用信息以获得竞争优势和支持企业目标的业务计划。数据战略必须来自对业务战略固有数据需求的理解:组织需要什么数据,如何获取数据,如何管理数据并确保其可靠性以及如何利用数据。
数据战略需要一个支持性的数据管理战略——一个维护和改进数据质量、数据完整性、访问和安全性的规划,同时降低已知和隐含的风险。在许多组织中,数据管理战略由CDO拥有和维护,并由数据治理委员会支持的数据管理团队实施。
数据管理战略的组成应包括:
- 1)令人信服的数据管理愿景。
- 2)数据管理的商业案例总结。
- 3)指导原则、价值观和管理观点
- 4)数据管理的使命和长期目标。
- 5)数据管理成功的建议措施。
- 6)符合SMART原则(具体、可衡量、可操作、现实、有时间限制)的短期(12~24个月)数据管理计划目标。
- 7)对数据管理角色和组织的描述,以及对其职责和决策权的总结。
- 8)数据管理程序组件和初始化任务。
- 9)具体明确范围的优先工作计划。
- 10)一份包含项目和行动任务的实施路线图草案。
数据管理战略规划的可交付成果包括:
- 1)数据管理章程。包括总体愿景、业务案例、目标、指导原则、成功衡量标准、关键成功因素、可识别的风险、运营模式等。
- 2)数据管理范围声明。包括规划目的和目标(通常为3年),以及负责实现这些目标的角色、组织和领导。
- 3)数据管理实施路线图。确定特定计划、项目、任务分配和交付里程碑
3.数据管理框架
数据管理框架是用来全面了解数据管理,并查看其组件之间的关系。因为这些组件功能相互依赖、需要协调一致,所以在任何组织中,各方面数据管理人员都需要紧密协作才能从数据中获得价值。
DAMA框架针对不同抽象级别提供了一系列关于如何管理数据的路径。这些视角提供了可用于阐明战略、制定路线图、组织团队和协调职能的洞察力。 组织所采用的数据管理方法取决于某些关键要素,如其所处行业、所应用的数据范围、企业文化、成熟度、战略、愿景以及待解决的问题和挑战。
1)前两个模型,即战略一致性模型和阿姆斯特丹(Amsterdam)信息模型,展示了组织管理数据的高阶关系。
2)DAMA-DMBOK框架(DAMA车轮图、六边形图和语境关系图)描述了由DAMA定义的数据管理知识领域,并解释了它们在DMBOK中的视觉表现。
3)最后两个模型是以DAMA为基础重新排列组件,以便于更好地理解和描述它们之间的关系。
3.1 战略一致性模型
战略一致性模型(Strategic Alignment Model,SAM)抽象了各种数据管理方法的基本驱动因素(Henderson和Venkatraman,1999),模型 的中心是数据和信息之间的关系。
战略一致性模型的完整阐述比图1-3所示的更复杂。每个角的六边形都有自己的下层结构。例如,在业务和IT战略中,都需要将范围、能力和治理纳入考虑。研究各部分间的关系有助于理解不同组件适配战略和功能集成。
3.2 阿姆斯特丹信息模型
阿姆斯特丹信息模型(The Amsterdam Information Model,AIM)与战略一致性模型一样,从战略角度看待业务和IT的一致性, 共有9个单元,它抽象出一个关注结构(包括规划和架构)和策略的中间层。SAM(战略一致性模型)和AIM(阿姆斯特丹信息模型)框架从横轴(业务/IT战略)和纵轴(业务战略/业务运营)两个维度详细描述组件之间的关系。
3.3 DAMA-DMBOK框架
DAMA-DMBOK框架更加深入地介绍了构成数据管理总体范围的知识领域。通过3幅图描述了DAMA的数据管理框架:DAMA车轮图、环境因素六边形图以及知识领域语境关系图。
3.3.1 DAMA车轮图
DAMA车轮图定义了数据管理知识领域。它将数据治理放在数据管理活动的中心,因为治理是实现功能内部一致性和功能之间平衡所必需的。其他知识领域(数据体系结构、数据建模等)围绕车轮平衡。它们都是成熟数据管理功能的必要组成部分,但根据各组织的需求,它们可能在不同的时间实现。
3.3.2 环境因素六边形图
环境因素六边形图显示了人、过程和技术之间的关系,是理解DMBOK语境关系图的关键。它将目标和原则放在中心,因为这些目标和原则为人们如何执行活动及有效地使用工具成功进行数据管理提供了指导。
3.3.3 知识领域语境关系图
知识领域语境关系图(图1-7)描述了知识领域的细节,包括与人员、流程和技术相关的细节。它们基于产品管理(供给者、输入、活 动、交付成果和消费者)的SIPOC图的概念。语境关系图将活动放在中心,这些活动生产了满足利益相关方需求的可交付成果。
每个语境关系图都以知识领域的定义和目标开始。目标驱动的活动分为4个阶段:计划(P)、控制(C)、开发(D)和运营(O)。从左侧流入活动中是输入和供给者,右侧从活动中流出是交付成果和消费者,参与者列在活动下方,底层是影响知识领域各个方面的技术、工具和度量指标。
语境关系图中的列表是说明性的,而不是详尽的。对于不同的组织活动事项有不同的应用方式。高级角色列表只包括最重要的角色。每个组织都可以调整该模式来满足自己的需求。
语境关系图的组成部分包括:
- 1)定义。本节为知识领域的简要定义。
- 2)目标。它描述了每个知识领域内指导活动执行的目的、基本原则。
- 3)活动。它是实现知识领域目标所需的行动和任务。一些活动按子活动、任务和步骤进行描述。活动分为4类,即计划、控制、开发和运营。
- ① 计划活动(P)。为实现数据管理目标设定战略和战术工作。计划活动为经常性活动。
- ② 控制活动(C)。持续地确保数据质量,以及数据存取和使用的完整性、可靠性和安全性。
- ③ 开发活动(D)。围绕系统开发的生命周期(SDLC)开展的分析、设计、构建、测试、准备和部署等活动。
- ④ 运营活动(O)。支持系统和流程的使用、维护和增强,通过这些系统和流程进行数据的存取和使用。
-
- 输入。它是每个知识领域启动其活动所需的有形事物。许多活动需要相同的输入。例如,许多领域需要了解业务战略并把它作为输入。
-
- 交付成果。它是知识领域内活动的产出,是每个职能部门负责生产的有形事物。交付成果可能以其自身或其他活动的输入为目的。几个主要的交付成果是由多个功能创建的。
- 6)角色和职责。描述个人和团队如何为知识领域内的活动做出贡献。对角色在概念上进行了描述,聚焦重点是大多数组织所需的角色组。个人的角色是根据技能和资格要求来定义的。
- 7)供给者。负责提供或允许访问活动输入的人员。
- 8)消费者。直接受益于数据管理活动产生主要交付成果的消费方。
- 9)参与者。执行、管理或批准知识领域活动的人员。
- 10)工具。它是实现知识领域目标的应用程序和其他技术。
- 11)方法。它是用于在知识领域内执行活动和产生可交付成果的方法和程序。它还包括共同约定、最佳实践建议、标准和协议以及新出现的一些合适的替代方法。
- 12)度量指标。它是衡量或评估绩效、进度、质量、效率或其他影响的标准。这些指标用于定义每个知识领域内完成工作的可量化事实。度量指标也可以用于测量更抽象的特性,如提升或价值。
DAMA车轮图呈现的是一组知识领域的概要,六边形图展示了知识领域结构的组成部分,语境关系图显示了每个知识领域中的细节。现有的DAMA数据管理框架还没有描述不同知识领域之间的关系。
3.4 DMBOK金字塔(Aiken)
彼得·艾肯(Peter Aiken)的框架中使用DMBOK知识领域来描述许多组织演化的情况。使用此框架,组织可定义一种演化路径,达到拥有可靠的数据和流程的状态,支持战略业务目标的实现。为了实现这一目标,许多组织都经历了类似的逻辑步骤(图1-8)。
- 第1阶段:组织购买包含数据库功能的应用程序。这意味着组织以此作为数据建模、设计、数据存储和数据安全的起点(例如,让一些人进来,让其他人出去)。要使系统在其数据环境中运行,还需要做数据集成和交互操作方面的工作。
- 第2阶段:一旦组织开始使用应用程序,他们将面临数据质量方面的挑战,但获得更高质量的数据取决于可靠的元数据和一致的数据架构,它们说明了来自不同系统的数据是如何协同工作的。
- 第3阶段:管理数据质量、元数据和架构需要严格地实践数据治理,为数据管理活动提供体系性支持。数据治理还支持战略计划的实施,如文件和内容管理、参考数据管理、主数据管理、数据仓库和商务智能,这些黄金金字塔中的高级应用都会得到充分的支持。
- 第4阶段:该组织充分利用了良好管理数据的好处,并提高了其分析能力。
Aiken的金字塔是基于DAMA车轮图构建出来的,展示了各知识领域之间的关系。金字塔框架有两个驱动因素:第一,建立一个基础,每个组件都出现在合适的位置上、彼此之间相互支持;第二,某些矛盾的观点认为,这些组件可以任意顺序出现。
3.5 DAMA数据管理框架的进化
Aiken的金字塔中描述了一个组织如何向更好的数据管理实践发展的路径。学习DAMA知识领域的另一种方法是探索它们之间的依赖关系。图1-9中的框架由苏伊格恩斯(Sue Geuens)开发:
- 商务智能和分析功能依赖于所有其他数据管理功能。它们直接依赖于主数据和数据仓库解决方案。但反过来,它们又依赖输入信息的系统和应用。
- 可靠的数据质量、数据设计和数据交互操作实践是可靠系统和应用的基础。
- 数据治理包括元数据管理、数据安全、数据架构和参考数据管理,这些提供了所有其他功能依赖的基础。
图1-10中描述了DAMA车轮图的第三种替代方案。该图借鉴了体系结构概念,呈现了DAMA知识领域之间的一组关系。为了澄清这些关系,提供了一些知识领域内容的附加细节。
- 从数据管理的指导目标开始:使组织能够像从其他资产中获取价值那样,从其数据资产中获取价值。
- 派生价值需要生命周期管理,因此与数据生命周期相关的数据管理功能在图的中心进行了描述。
- 可靠、高质量的数据进行规划和设计
- 建立过程和功能来使用和维护数据
- 在各种类型的分析活动以及这些过程中使用数据,以提高其价值
- 只关注直接生命周期功能的组织,从其数据中获得的价值要少于那些通过基础活动和治理活动支持数据生命周期的组织。
- 基础活动,如数据风险管理、元数据和数据质量管理,跨越了数据生命周期。
- 基础活动促进决策更加有效和数据更易于使用。
- 数据治理项目通过制定战略和支持原则、制度和管理实践,使组织能够以数据为驱动力,确保组织认识到并利用从其数据中获得价值的机会。
- 数据治理项目还应与组织变革管理活动联系在一起,以培育组织并鼓励能够战略性使用数据的行为。
DAMA数据管理框架也被描述为另一种形式的DAMA车轮图,数据治理范围内的应用活动围绕着数据管理生命周期内的各项核心活动进行(图1-11)
- 核心活动位于框架中心,包括元数据管理、数据质量管理和数据结构定义(架构)。
- 生命周期管理活动可以从多个方面定义,如计划的角度(风险管理、建模、数据设计、参考数据管理),实现的角度(数据仓库、主数据管理、数据存储和操作、数据集成和互操作、数据开发技术)
- 生命周期管理活动源于数据的使用:主数据使用、文件和内容管理、商务智能、数据科学、预测分析、数据可视化。许多情况下都会基 于现有数据进行增强性的开发,获取更多洞察,产生更多的数据和信息。数据货币化的机会可以确定源于数据的使用。
- 数据治理活动通过战略、原则、制度和管理提供监督和遏制。它们通过数据分类和数据估值实现一致性。
4.DAMA和DMBOK
DAMA的成立就是为了应对数据管理带来的挑战。DMBOK是围绕DAMA-DMBOK数据管理框架(也称为DAMA车轮图,参见图1-5)的11个知识领域构建的。
-
- 数据治理(Data Governance)通过建立一个能够满足企业需求的数据决策体系,为数据管理提供指导和监督
-
- 数据架构(Data Architecture)定义了与组织战略协调的管理数据资产蓝图,以建立战略性数据需求及满足需求的总体设计。
-
- 数据建模和设计(Data Modeling and Design)以数据模型(Data Model)的精确形式,进行发现、分析、展示和沟通数据需求。
-
- 数据存储和操作(Data Storage and Operations)以数据价值最大化为目标,包括存储数据的设计、实现和支持活动以及在整个数据生命周期中,从计划到销毁的各种操作活动。
-
- 数据安全(Data Security)确保数据隐私和机密性得到维护,数据不被破坏,数据被适当访问。
-
- 数据集成和互操作(Data Integration and Interoperability)包括与数据存储、应用程序和组织之间的数据移动和整合相关的过程。
-
- 文件和内容管理(Document and Content Management)用于管理非结构化媒体数据和信息的生命周期过程,包括计划、实施和控制活动,尤其是指支持法律法规遵从性要求所需的文档。
-
- 参考数据和主数据(Reference and Master Data)包括核心共享数据的持续协调和维护,使关键业务实体的真实信息以准确、及时和相关联的方式在各系统间得到一致使用。
-
- 数据仓库和商务智能(Data Warehousing and Business Intelligence)包括计划、实施和控制流程来管理决策支持数据,并使知识工作者通过分析报告从数据中获得价值。
-
- 元数据(Metadata)包含规划、实施和控制活动,以便能够访问高质量的集成元数据,包括定义、模型、数据流和其他至关重要的信息。
-
- 数据质量(Data Quality)包括规划和实施质量管理技术,以测量、评估和提高数据在组织内的适用性。
5.总结
-
数据管理 : 为了交付、控制、保护以及提升数据和信息资产的价值, 在其整个生命周期中制订计划、制度、规程和实践活动, 并执行和监督的过程。
-
数据管理专业人员: 从事数据管理各方面的工作(数据全生命周期的技术管理工作, 确保数据的合理利用和发挥作用), 高级技术人员(程序员、数据库管理人员、网络管理员) 和 战略业务人员(数据管理专员、数据策略师、首席数据官)
-
数据管理的目标: 满足自己和利益方的需求; 确保数据的完整性、质量、隐私和保密性; 防止数据和信息被不当使用; 数据有效服务企业增值目标
-
数据: 信息的原材料。 信息: 在上下文语境中的数据。
-
数据驱动: 使用事件触发和应用分析来获得可操作的洞察力。必须通过业务领导和技术专业知识的合作关系, 以专业的规则高效管理数据。
-
数据管理原则:
-
- 有效的数据管理需要领导层承担责任
-
- 数据价值: 独特属性的资产、可用经济属于表示
-
- 数据管理需求是业务的需求: 数据质量管理、元数据、规划、驱动信息数据决策
-
- 数据管理依赖不同技能: 跨职能、企业级视角、为多方面要求负责
-
- 数据管理是生命周期管理: 不同类型数据有不同的生命周期; 需要纳入与数据相关的风险
-
-
低质量数据成本: 1) 报废和返工 2) 解决方法和隐藏的纠正过程 3) 组织效率低下或生产力低下 4) 组织冲突
- 工作满意度低 6) 客户不满意 7) 机会成本, 包括无法创新 8) 合规成本或罚款 9) 声誉成本
-
高质量数据的作用: 1) 改善客户体验 2) 提高生产力 3) 降低风险 4) 快速响应商机 5) 增加收入 6) 洞察客户、产品、流程和商机, 获取竞争优势
-
元数据: 元数据是全面改进数据管理的起点。
-
数据生命周期的影响:
-
- 创建和使用是数据生命周期的关键点;
-
- 数据质量管理必须贯穿整个数据生命周期;
-
- 元数据质量管理必须贯穿整个数据生命周期;
-
- 数据管理包括确保数据安全, 并降低与数据相关的风险;
-
- 数据管理工作应聚焦于关键数据
-
-
数据管理需要: 设计技能、高技术技能、理解问题和释放数据的技能、语言技能、战略思维
-
数据管理战略的组成:
-
- 令人信服的数据管理愿景;
-
- 数据管理的商业案例总结;
-
- 指导原则、价值观和管理观点;
-
- 数据管理的使命和长期目标;
-
- 数据管理成功的建议措施;
-
- 符合SMART原则(具体、可衡量、可操作、现实、有时间限制)的短期(12~24个月)数据管理计划目标;
-
- 对数据管理角色和组织的描述, 以及对其职责和决策权的总结;
-
- 数据管理程序组件和初始化任务;
-
- 具体明确范围的优先工作计划;
-
- 一份包含项目和行动任务的实施路线图草案
-
-
数据管理战略规划的可交付成果:
-
- 数据管理章程: 总体愿景、业务案例、目标、指导原则、成功衡量标准、关键成功因素、可识别的风险、运营模式等。
-
- 数据管理范围声明: 规划目的和目标(通常为3年), 以及负责实现这些目标的角色、组织和领导。
-
- 数据管理实施路线图: 确定特定计划、项目、任务分配和交付里程碑。
-
-
数据管理框架:
- 战略一致性模型(SAM) : 抽象了各种数据管理方式的基本驱动因素, 模型中心是数据和信息之间的关系。
- 阿姆斯特丹信息模型(AIM): 与战略一致性模型一样, 抽象出一个关注结构(包括规划和架构)和策略的中间层。
- 环境因素六边形图: 显示了人、过程和技术之间的关系, 是理解DMBOK 语境关系图的关键。
-
- 一份包含项目和行动任务的实施路线图草案
-
数据管理战略规划的可交付成果:
-
- 数据管理章程: 总体愿景、业务案例、目标、指导原则、成功衡量标准、关键成功因素、可识别的风险、运营模式等。
-
- 数据管理范围声明: 规划目的和目标(通常为3年), 以及负责实现这些目标的角色、组织和领导。
-
- 数据管理实施路线图: 确定特定计划、项目、任务分配和交付里程碑。
-
-
数据管理框架:
- 战略一致性模型(SAM) : 抽象了各种数据管理方式的基本驱动因素, 模型中心是数据和信息之间的关系。
- 阿姆斯特丹信息模型(AIM): 与战略一致性模型一样, 抽象出一个关注结构(包括规划和架构)和策略的中间层。
- 环境因素六边形图: 显示了人、过程和技术之间的关系, 是理解DMBOK 语境关系图的关键。
- 知识领域语境关系图: 描述了知识领域的细节, 包括与人员、流程和技术相关的细节。数据治理活动通过战略、原则、制度和管理提供监督和遏制。通过数据分类和数据估值实现一致性。